Цикл накопленной суммы значений столбцов в Python Reset Value в определенный месяц каждого года - PullRequest
0 голосов
/ 13 декабря 2018

Я пытаюсь суммировать значения в столбце и сбрасывать их в определенный месяц каждый год.Я проверил следующие ссылки, которые были полезны, но я все еще не могу найти ответ, который указывает мне правильное направление.

Совокупная сумма с интервалами СбросБаза накопленной суммы при условии Панды Условный счет накопленной суммы Кадр данных - цикл по столбцам Панды: условный скользящий счет

Ссылка, которая была ближайшей кчто я ищу ( Pyspark: накопленная сумма с условием сброса ), но я не могу понять, как преобразовать его из PySpark в Pandas (или другой метод Python.

raw_data = {'change_value': [-6, -13, -19, -82, -25, -39, -27, 0, 8, 32, 55, 94, 75, 77], 
        'cumu_value': [-6, -19, -38, -120, -145, -184, -211, -211, -203, -171, -116, -22, 75, 130], 
        'month': [10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
        'date': ['2017-10','2017-11','2017-12','2018-01','2018-02','2018-03'
                 ,'2018-04','2018-05','2018-06','2018-07','2018-08','2018-09',
                 '2018-10', '2018-11']}

df = pd.DataFrame(raw_data, columns = ['change_value', 'cumu_value', 'month', 'date'])

df

df.loc[df['month'] == '10', ['cumu_value']] = df['change_value']

df['cumu_value'] = df.change_value.cumsum() 

change_value  cumu_value  month     date
0             -6     -6     10  2017-10
1            -13    -19     11  2017-11
2            -19    -38     12  2017-12
3            -82   -120      1  2018-01
4            -25   -145      2  2018-02
5            -39   -184      3  2018-03
6            -27   -211      4  2018-04
7              0   -211      5  2018-05
8              8   -203      6  2018-06
9             32   -171      7  2018-07
10            55   -116      8  2018-08
11            94    -22      9  2018-09
12            75     75     10  2018-10  <<<< every October I would like the to cumu_value to reset - to that month's change_value
13            77    130     11  2018-11 <<< for some reason the cumu_value adds all the values for all the months rather than just the value for 2018-10 and 2018-11

1 Ответ

0 голосов
/ 13 декабря 2018

Создать groups, где идентификатор_группы меняется каждый октябрь.Затем cumsum в каждой группе, эффективно сбрасывая ее каждый октябрь.

df['cumu_value'] = df.groupby(df.month.eq(10).cumsum()).change_value.cumsum()

Вывод:

    change_value  cumu_value  month     date
0             -6          -6     10  2017-10
1            -13         -19     11  2017-11
2            -19         -38     12  2017-12
3            -82        -120      1  2018-01
4            -25        -145      2  2018-02
5            -39        -184      3  2018-03
6            -27        -211      4  2018-04
7              0        -211      5  2018-05
8              8        -203      6  2018-06
9             32        -171      7  2018-07
10            55        -116      8  2018-08
11            94         -22      9  2018-09
12            75          75     10  2018-10
13            77         152     11  2018-11

В качестве иллюстрации мы группируем строки следующим образом:

print(df.month.eq(10).cumsum())
0     1
1     1
2     1
3     1
4     1
5     1
6     1
7     1
8     1
9     1
10    1
11    1
12    2
13    2
Name: month, dtype: int32

, поэтому мы cumsum первые 12 строк отдельно от последних 2 строк.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...