Используйте pandas.cut
с параметром right=False
, если не включает крайний правый край лотков:
X_train_data = pd.DataFrame({'Age':[0,2,4,13,35,-1,54]})
bins= [0,2,4,13,20,110]
labels = ['Infant','Toddler','Kid','Teen','Adult']
X_train_data['AgeGroup'] = pd.cut(X_train_data['Age'], bins=bins, labels=labels, right=False)
print (X_train_data)
Age AgeGroup
0 0 Infant
1 2 Toddler
2 4 Kid
3 13 Teen
4 35 Adult
5 -1 NaN
6 54 Adult
Последний для замены пропущенного значения используется add_categories
с fillna
:
X_train_data['AgeGroup'] = X_train_data['AgeGroup'].cat.add_categories('unknown')
.fillna('unknown')
print (X_train_data)
Age AgeGroup
0 0 Infant
1 2 Toddler
2 4 Kid
3 13 Teen
4 35 Adult
5 -1 unknown
6 54 Adult
bins= [-1,0,2,4,13,20, 110]
labels = ['unknown','Infant','Toddler','Kid','Teen', 'Adult']
X_train_data['AgeGroup'] = pd.cut(X_train_data['Age'], bins=bins, labels=labels, right=False)
print (X_train_data)
Age AgeGroup
0 0 Infant
1 2 Toddler
2 4 Kid
3 13 Teen
4 35 Adult
5 -1 unknown
6 54 Adult