при условии, что у вас есть исходный DF, до группировка:
In [70]: df
Out[70]:
ID A B C D
0 1.0 x x x 10.0.0.50/TCP/50
1 1.0 x x x 192.168.1.90/TCP/51
2 1.0 x x x server1/TCP/80
3 1.0 x x x 10.0.0.9/TCP/78
4 2.0 y y y 192.168.3.90/UDP/53
5 2.0 y y y 10.0.4.10/TCP/65
6 2.0 y y y 10.0.3.4/TCP/34
7 2.0 y y y host1/UDP/80
8 3.0 z z z 10.0.0.40/TCP/80
9 3.0 z z z 10.0.0.41/TCP/443
10 3.0 z z z 192.168.2.70/UDP/98
11 3.0 z z z 10.0.0.9/TCP/12
Опция 1: многоиндексный DF:
In [69]: (df.assign(x=df.D.replace(['/.*',r'\b(\d{1})\b',r'\b(\d{2})\b'],
...: ['',r'00\1',r'0\1'],
...: regex=True))
...: .sort_values('x')
...: .groupby(['ID','A','B','C'], sort=False, as_index=False)['D']
...: .apply('\n'.join)
...: .to_frame('D'))
...:
...:
Out[69]:
D
ID A B C
1.0 x x x 10.0.0.9/TCP/78\n10.0.0.50/TCP/50\n192.168.1.9...
3.0 z z z 10.0.0.9/TCP/12\n10.0.0.40/TCP/80\n10.0.0.41/T...
2.0 y y y 10.0.3.4/TCP/34\n10.0.4.10/TCP/65\n192.168.3.9...
Вариант 2: обычный DF:
In [75]: (df.assign(x=df.D.replace(['/.*',r'\b(\d{1})\b',r'\b(\d{2})\b'],
...: ['',r'00\1',r'0\1'],
...: regex=True))
...: .sort_values('x')
...: .groupby(['ID','A','B','C'], sort=False, as_index=False)['D']
...: .apply('\n'.join)
...: .reset_index(name='D'))
...:
...:
Out[75]:
ID A B C D
0 1.0 x x x 10.0.0.9/TCP/78\n10.0.0.50/TCP/50\n192.168.1.9...
1 3.0 z z z 10.0.0.9/TCP/12\n10.0.0.40/TCP/80\n10.0.0.41/T...
2 2.0 y y y 10.0.3.4/TCP/34\n10.0.4.10/TCP/65\n192.168.3.9...
следующее может помочь понять, как это работает:
добавить виртуальный столбец x
сIP-октеты с добавлением нуля:
In [71]: df.assign(x=df.D.replace(['/.*',r'\b(\d{1})\b',r'\b(\d{2})\b'],
...: ['',r'00\1',r'0\1'],
...: regex=True))
...:
...:
Out[71]:
ID A B C D x
0 1.0 x x x 10.0.0.50/TCP/50 010.000.000.050
1 1.0 x x x 192.168.1.90/TCP/51 192.168.001.090
2 1.0 x x x server1/TCP/80 server1
3 1.0 x x x 10.0.0.9/TCP/78 010.000.000.009
4 2.0 y y y 192.168.3.90/UDP/53 192.168.003.090
5 2.0 y y y 10.0.4.10/TCP/65 010.000.004.010
6 2.0 y y y 10.0.3.4/TCP/34 010.000.003.004
7 2.0 y y y host1/UDP/80 host1
8 3.0 z z z 10.0.0.40/TCP/80 010.000.000.040
9 3.0 z z z 10.0.0.41/TCP/443 010.000.000.041
10 3.0 z z z 192.168.2.70/UDP/98 192.168.002.070
11 3.0 z z z 10.0.0.9/TCP/12 010.000.000.009
сортировка DF по виртуальному столбцу x
:
In [72]: (df.assign(x=df.D.replace(['/.*',r'\b(\d{1})\b',r'\b(\d{2})\b'],
...: ['',r'00\1',r'0\1'],
...: regex=True))
...: .sort_values('x'))
...:
...:
Out[72]:
ID A B C D x
3 1.0 x x x 10.0.0.9/TCP/78 010.000.000.009
11 3.0 z z z 10.0.0.9/TCP/12 010.000.000.009
8 3.0 z z z 10.0.0.40/TCP/80 010.000.000.040
9 3.0 z z z 10.0.0.41/TCP/443 010.000.000.041
0 1.0 x x x 10.0.0.50/TCP/50 010.000.000.050
6 2.0 y y y 10.0.3.4/TCP/34 010.000.003.004
5 2.0 y y y 10.0.4.10/TCP/65 010.000.004.010
1 1.0 x x x 192.168.1.90/TCP/51 192.168.001.090
10 3.0 z z z 192.168.2.70/UDP/98 192.168.002.070
4 2.0 y y y 192.168.3.90/UDP/53 192.168.003.090
7 2.0 y y y host1/UDP/80 host1
2 1.0 x x x server1/TCP/80 server1