Python - Нахождение нижней позиции в массиве - PullRequest
0 голосов
/ 19 февраля 2019

Моя цель - переместить «монстра» (mX, mY) в сетке 2d к игроку (pX, pY).Монстр может двигаться в 8 разных направлениях.

У меня есть рабочий код для этого, но я очень плохо знаком с Python.У меня есть сильная склонность к тому, что мой код ужасен, и что есть более быстрые способы сделать это.

Я делаю это, создавая массив 3 x 3 вокруг позиции монстра (слот массива 4) и заполняя егос расстоянием от этой позиции массива до игрока.Затем я проверяю, находится ли кто-нибудь ниже, чем текущее расстояние монстров, и если да, переместите монстра к нему.

enter image description here

Вот мой текущий код.Извиняюсь, если тебя тошнит, я все еще изучаю веревки.

# get the distance between the monster and player
dist = math.hypot(pX - mX, pY - mY)

if dist > 1.5 and dist < 10:

    # make an 'array' grid to store updated distances in
    goto = np.full((3, 3), 10, dtype=float)

    # if each position in the array passes a
    # collision check, add each new distance

    if collisionCheck(mID, (mX-1), (mY-1), mMap) == 0:
        goto[0][0] = round(math.hypot(pX - (mX-1), pY - (mY-1)), 1)

    if collisionCheck(mID, mX, (mY-1), mMap) == 0:
        goto[0][1] = round(math.hypot(pX - mX, pY - (mY-1)), 1)

    if collisionCheck(mID, (mX+1), (mY-1), mMap) == 0:
        goto[0][2] = round(math.hypot(pX - (mX+1), pY - (mY-1)), 1)

    if main.collisionCheck(mID, (mX-1), mY, mMap) == 0:
        goto[1][0] = round(math.hypot(pX - (mX-1), pY - mY), 1)

    # goto[1][1] is skipped since that is the monsters current position

    if collisionCheck(mID, (mX+1), mY, mMap) == 0:
        goto[1][2] = round(math.hypot(pX - (mX+1), pY - mY), 1)

    if collisionCheck(mID, (mX-1), (mY+1), mMap) == 0:
        goto[2][0] = round(math.hypot(pX - (mX-1), pY - (mY+1)), 1)

    if collisionCheck(mID, mX, (mY+1), mMap) == 0:
        goto[2][1] = round(math.hypot(pX - mX, pY - (mY+1)), 1)

    if collisionCheck(mID, (mX+1), (mY+1), mMap) == 0:
        goto[2][2] = round(math.hypot(pX - (mX+1), pY - (mY+1)), 1)

    # get the lowest distance, and its key
    lowest = goto.min()
    lowestKey = goto.argmin()

    # if the lowest distance is lower than monsters current position, move

    if lowest < dist:
            if lowestKey == 0: 
                    newX = mX - 1
                    newY = mY - 1

            if lowestKey == 1:
                    newY = mY - 1

            if lowestKey == 2: 
                    newX = mX + 1
                    newY = mY - 1

            if lowestKey == 3: 
                    newX = mX - 1

            if lowestKey == 5: 
                    newX = mX + 1

            if lowestKey == 6: 
                    newY = mY + 1
                    newX = mX - 1

            if lowestKey == 7:
                    newY = mY + 1

            if lowestKey == 8: 
                    newX = mX + 1
                    newY = mY + 1

Какой самый чистый, простой и быстрый способ сделать то, что я делаю?Это будет проходить через множество монстров одновременно!


РЕДАКТИРОВАТЬ: Добавлено collisionCheck():

def collisionCheck(mobID, newX, newY, mapName):
    blocked = 0
    if mobs.mobPos_arr[mapName][newX,newY] > -1:
        blocked = 1

    if mapCollision_arr[mapName][newX,newY] > 0:
        blocked = 1

    return int(blocked) 

1 Ответ

0 голосов
/ 19 февраля 2019

Вы можете использовать трансляцию массива для одновременного вычисления потенциальных новых позиций:

delta = np.arange(-1, 2)
move = np.stack([np.repeat(delta, 3), np.tile(delta, 3)], axis=1)

# Assuming that m_pos.shape is (N: number of monsters, 2).
options = m_pos[:, None, :] + move  # Shape (N, 9, 2).

# Collision check.
zip_pos = tuple(zip(*options.reshape(-1, 2)))
check_1 = mobs.mobPos_arr[mapName][zip_pos] > -1
check_2 = mapCollision_arr[mapName][zip_pos] > 0
valid = ~(check_1 | check_2).reshape(-1, 9)

# Now compute distance.
distance = np.linalg.norm(p_pos - options, axis=-1)

# Incorporate whether moves are valid.
valid_distance = np.where(valid, distance, np.inf)

# Select the best move (the one with smallest valid distance).
best = np.argmin(valid_distance, axis=-1)

# Select new positions from the options, based on best move estimation.
new_pos = options[np.arange(len(options)), best]
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...