Keras multi_gpu_model вызывает сбой системы - PullRequest
0 голосов
/ 19 февраля 2019

Я пытаюсь обучить довольно большой LSTM на большом наборе данных и иметь 4 графических процессора для распределения нагрузки.Если я пытаюсь тренироваться только на одном из них (на любом из них я пробовал каждый), он работает правильно, но после добавления кода multi_gpu_model происходит сбой всей моей системы, когда я пытаюсь его запустить.Вот мой код для нескольких графических процессоров

batch_size = 8
model = Sequential()
model.add(Masking(mask_value=0., input_shape=(len(inputData[0]), len(inputData[0][0])) ))
model.add(LSTM(256,  return_sequences=True))
model.add(Dropout(.2))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(.2))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(.2))
model.add(Dense(len(outputData[0][0]),  activation='softmax'))
rms = RMSprop()
p_model = multi_gpu_model(model, gpus=4)
p_model.compile(loss='categorical_crossentropy',optimizer=rms, metrics=['categorical_accuracy'])

print("Fitting")
p_model.fit_generator(songBatchGenerator(songList,batch_size), epochs=250,  verbose=1,  shuffle=False, steps_per_epoch=math.ceil(len(songList)/batch_size))
pickleSave('kerasTrained.pickle', parallel_model)
print("Saved")

, меняющий его на

batch_size = 8
model = Sequential()
model.add(Masking(mask_value=0., input_shape=(len(inputData[0]), len(inputData[0][0])) ))
model.add(LSTM(256,  return_sequences=True))
model.add(Dropout(.2))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(.2))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(.2))
model.add(Dense(len(outputData[0][0]),  activation='softmax'))
rms = RMSprop()

model.compile(loss='categorical_crossentropy',optimizer=rms, metrics=['categorical_accuracy'])

print("Fitting")
model.fit_generator(songBatchGenerator(songList,batch_size), epochs=250,  verbose=1,  shuffle=False, steps_per_epoch=math.ceil(len(songList)/batch_size))
pickleSave('kerasTrained.pickle', parallel_model)
print("Saved")

отлично работает

3 графических процессоров - это Nvidia 1060 3 ГБ, а 1 - 6 ГБ,и система имеет около 4 ГБ памяти (хотя я сомневаюсь, что это проблема, так как я использую генератор).

1 Ответ

0 голосов
/ 19 февраля 2019

Keras использует все 4 вычисления GPU, и компиляция кода может быть сделана с CPU.Вы можете попробовать приведенный ниже код.Для получения дополнительной информации взгляните на ссылку на сайт tenorflow https://www.tensorflow.org/api_docs/python/tf/keras/utils/multi_gpu_model

def create_model():
   batch_size = 8
   model = Sequential()
   model.add(Masking(mask_value=0., input_shape=(len(inputData[0]), len(inputData[0][0])) ))
   model.add(LSTM(256,  return_sequences=True))
   model.add(Dropout(.2))
   model.add(LSTM(128, return_sequences=True))
   model.add(Dropout(.2))
   model.add(LSTM(128, return_sequences=True))
   model.add(Dropout(.2))
   model.add(Dense(len(outputData[0][0]),  activation='softmax'))

   return model


# we'll store a copy of the model on *every* GPU and then combine
# the results from the gradient updates on the CPU
# initialize the model
with tf.device("/cpu:0"):
     model = create_model()

# make the model parallel
p_model = multi_gpu_model(model, gpus=4)


rms = RMSprop()
p_model.compile(loss='categorical_crossentropy',optimizer=rms, metrics=['categorical_accuracy'])
print("Fitting")
p_model.fit_generator(songBatchGenerator(songList,batch_size), epochs=250,  verbose=1,  shuffle=False, steps_per_epoch=math.ceil(len(songList)/batch_size))
pickleSave('kerasTrained.pickle', parallel_model)
print("Saved")
...