Как удалить столбцы в numpy.array - PullRequest
55 голосов
/ 29 октября 2009

Я хотел бы удалить выбранные столбцы в массиве numpy.array. Вот что я делаю:

n [397]: a = array([[ NaN,   2.,   3., NaN],
   .....:        [  1.,   2.,   3., 9]])

In [398]: print a
[[ NaN   2.   3.  NaN]
 [  1.   2.   3.   9.]]

In [399]: z = any(isnan(a), axis=0)

In [400]: print z
[ True False False  True]

In [401]: delete(a, z, axis = 1)
Out[401]:
 array([[  3.,  NaN],
       [  3.,   9.]])

В этом примере моя цель - удалить все столбцы, содержащие NaN. Я ожидаю последнюю команду в результате:

array([[2., 3.],
       [2., 3.]])

Как я могу это сделать?

Ответы [ 8 ]

72 голосов
/ 17 февраля 2011

Учитывая его название, я думаю, что стандартный путь должен быть delete:

import numpy as np

A = np.delete(A, 1, 0)  # delete second row of A
B = np.delete(B, 2, 0)  # delete third row of B
C = np.delete(C, 1, 1)  # delete second column of C

Согласно странице документации numpy , параметры для numpy.delete следующие:

numpy.delete(arr, obj, axis=None)

  • arr относится к входному массиву,
  • obj относится к тому, какие подмассивы (например, номер столбца / строки или срез массива) и
  • axis относится к операции удаления по столбцу (axis = 1) или по строке (axis = 0).
16 голосов
/ 05 июля 2011

Пример из справочная документация :

>>> a = numpy.array([[ 0,  1,  2,  3],
               [ 4,  5,  6,  7],
               [ 8,  9, 10, 11],
               [12, 13, 14, 15]])

>>> numpy.delete(a, numpy.s_[1:3], axis=0)                       # remove rows 1 and 2

array([[ 0,  1,  2,  3],
       [12, 13, 14, 15]])

>>> numpy.delete(a, numpy.s_[1:3], axis=1)                       # remove columns 1 and 2

array([[ 0,  3],
       [ 4,  7],
       [ 8, 11],
       [12, 15]])
13 голосов
/ 29 октября 2009

Другой способ - использовать маскированные массивы:

import numpy as np
a = np.array([[ np.nan,   2.,   3., np.nan], [  1.,   2.,   3., 9]])
print(a)
# [[ NaN   2.   3.  NaN]
#  [  1.   2.   3.   9.]]

Метод np.ma.masked_invalid возвращает замаскированный массив с замаскированными nans и infs:

print(np.ma.masked_invalid(a))
[[-- 2.0 3.0 --]
 [1.0 2.0 3.0 9.0]]

Метод np.ma.compress_cols возвращает двумерный массив с любым столбцом, содержащим скрытое значение скрыто:

a=np.ma.compress_cols(np.ma.masked_invalid(a))
print(a)
# [[ 2.  3.]
#  [ 2.  3.]]

См манипулируя-а-maskedarray

8 голосов
/ 29 октября 2009

Это создает другой массив без этих столбцов:

  b = a.compress(logical_not(z), axis=1)
6 голосов
/ 10 ноября 2013

С Документация Numpy

np.delete (arr, obj, axis = None) Возврат нового массива с удаленными вложенными массивами вдоль оси.

>>> arr
array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12]])
>>> np.delete(arr, 1, 0)
array([[ 1,  2,  3,  4],
       [ 9, 10, 11, 12]])

>>> np.delete(arr, np.s_[::2], 1)
array([[ 2,  4],
       [ 6,  8],
       [10, 12]])
>>> np.delete(arr, [1,3,5], None)
array([ 1,  3,  5,  7,  8,  9, 10, 11, 12])
2 голосов
/ 16 октября 2011

В вашей ситуации вы можете извлечь нужные данные с помощью:

a[:, -z]

"- z" - логическое отрицание логического массива "z". Это так же, как:

a[:, logical_not(z)]
1 голос
/ 24 марта 2015
>>> A = array([[ 1,  2,  3,  4],
               [ 5,  6,  7,  8],
               [ 9, 10, 11, 12]])

>>> A = A.transpose()

>>> A = A[1:].transpose()
0 голосов
/ 14 ноября 2016

Удаление столбцов матрицы, которые содержат NaN. Это длинный ответ, но, надеюсь, за ним легко следовать.

def column_to_vector(matrix, i):
    return [row[i] for row in matrix]
import numpy
def remove_NaN_columns(matrix):
    import scipy
    import math
    from numpy import column_stack, vstack

    columns = A.shape[1]
    #print("columns", columns)
    result = []
    skip_column = True
    for column in range(0, columns):
        vector = column_to_vector(A, column)
        skip_column = False
        for value in vector:
            # print(column, vector, value, math.isnan(value) )
            if math.isnan(value):
                skip_column = True
        if skip_column == False:
            result.append(vector)
    return column_stack(result)

### test it
A = vstack(([ float('NaN'), 2., 3., float('NaN')], [ 1., 2., 3., 9]))
print("A shape", A.shape, "\n", A)
B = remove_NaN_columns(A)
print("B shape", B.shape, "\n", B)

A shape (2, 4) 
 [[ nan   2.   3.  nan]
 [  1.   2.   3.   9.]]
B shape (2, 2) 
 [[ 2.  3.]
 [ 2.  3.]]
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...