В настоящее время я работаю над проектом Python для камеры DeepLens на AWS.Я пытаюсь сохранить изображения, поместить их в список и параллельно добавить их в AWS S3.
Когда снимок изображения и отправка его на S3 работают последовательно, все работает.Это когда я пытаюсь запустить обе функции асинхронно, это больше не работает.
Действительно, запускается только один из двух потоков: я снимаю изображения, но не могу отправить их на S3.
Считаете ли вы, что необходимо использовать другую библиотеку, кроме потоков, или что ошибка происходит из моего кода.
Спасибо.
#*****************************************************
# *
# Copyright 2018 Amazon.com, Inc. or its affiliates. *
# All Rights Reserved. *
# *
#*****************************************************
""" A sample lambda for face detection"""
from threading import Thread, Event, Timer
import os
import json
import numpy as np
import awscam
import cv2
import greengrasssdk
import boto3
from botocore.session import Session
import time
# ----------------------------------- Function ------------------------------------
liste_of_frame = []
def write_image_to_s3(img):
session = Session()
s3 = session.create_client('s3')
file_name = 'DeepLens/image-'+time.strftime("%Y%m%d-%H%M%S")+'.jpg'
# You can contorl the size and quality of the image
encode_param=[int(cv2.IMWRITE_JPEG_QUALITY),100]
_, jpg_data = cv2.imencode('.jpg', img, encode_param)
response = s3.put_object(ACL='public-read', Body=jpg_data.tostring(),Bucket='deeplens-sagemaker-f2e',Key=file_name)
image_url = 'https://s3.amazonaws.com/deeplens-sagemaker-f2e/'+file_name
return image_url
def upload_image():
client.publish(topic=iot_topic, payload='upload_image')
if len(liste_of_frame) > 0:
for i,img in enumerate(liste_of_frame):
write_image_to_s3(img)
try:
liste_of_frame.pop(i)
except:
pass
return liste_of_frame
def capture_img(model_type, output_map, client, iot_topic, local_display, model_path, model, detection_threshold, input_height, input_width):
# client.publish(topic=iot_topic, payload='inside function')
ret, frame = awscam.getLastFrame()
if not ret:
raise Exception('Failed to get frame from the stream')
# Resize frame to the same size as the training set.
frame_resize = cv2.resize(frame, (input_height, input_width))
# Run the images through the inference engine and parse the results using
# the parser API, note it is possible to get the output of doInference
# and do the parsing manually, but since it is a ssd model,
# a simple API is provided.
parsed_inference_results = model.parseResult(model_type,
model.doInference(frame_resize))
# Compute the scale in order to draw bounding boxes on the full resolution
# image.
yscale = float(frame.shape[0]/input_height)
xscale = float(frame.shape[1]/input_width)
# Dictionary to be filled with labels and probabilities for MQTT
cloud_output = {}
# Get the detected faces and probabilities
for obj in parsed_inference_results[model_type]:
if obj['prob'] > detection_threshold:
cloud_output[output_map[obj['label']]] = obj['prob']
# client.publish(topic=iot_topic, payload='Ajout a la liste')
liste_of_frame.append(frame)
# Set the next frame in the local display stream.
local_display.set_frame_data(frame)
# Send results to the cloud
# client.publish(topic=iot_topic, payload=json.dumps(cloud_output))
def init_greengrass():
# This face detection model is implemented as single shot detector (ssd).
model_type = 'ssd'
output_map = {1: 'face'}
# Create an IoT client for sending to messages to the cloud.
client = greengrasssdk.client('iot-data')
iot_topic = '$aws/things/{}/infer'.format(os.environ['AWS_IOT_THING_NAME'])
# Create a local display instance that will dump the image bytes to a FIFO
# file that the image can be rendered locally.
local_display = LocalDisplay('480p')
local_display.start()
# The sample projects come with optimized artifacts, hence only the artifact
# path is required.
model_path = '/opt/awscam/artifacts/mxnet_deploy_ssd_FP16_FUSED.xml'
# Load the model onto the GPU.
client.publish(topic=iot_topic, payload='Loading face detection model')
model = awscam.Model(model_path, {'GPU': 1})
client.publish(topic=iot_topic, payload='Face detection model loaded')
# Set the threshold for detection
detection_threshold = 0.5
# The height and width of the training set images
input_height = 300
input_width = 300
return model_type, output_map, client, iot_topic, local_display, model_path, model, detection_threshold, input_height, input_width
# --------------------------------------- End Function -----------------------------------
class LocalDisplay(Thread):
""" Class for facilitating the local display of inference results
(as images). The class is designed to run on its own thread. In
particular the class dumps the inference results into a FIFO
located in the tmp directory (which lambda has access to). The
results can be rendered using mplayer by typing:
mplayer -demuxer lavf -lavfdopts format=mjpeg:probesize=32 /tmp/results.mjpeg
"""
def __init__(self, resolution):
""" resolution - Desired resolution of the project stream """
# Initialize the base class, so that the object can run on its own
# thread.
super(LocalDisplay, self).__init__()
# List of valid resolutions
RESOLUTION = {'1080p' : (1920, 1080), '720p' : (1280, 720), '480p' : (858, 480)}
if resolution not in RESOLUTION:
raise Exception("Invalid resolution")
self.resolution = RESOLUTION[resolution]
# Initialize the default image to be a white canvas. Clients
# will update the image when ready.
self.frame = cv2.imencode('.jpg', 255*np.ones([640, 480, 3]))[1]
self.stop_request = Event()
def run(self):
""" Overridden method that continually dumps images to the desired
FIFO file.
"""
# Path to the FIFO file. The lambda only has permissions to the tmp
# directory. Pointing to a FIFO file in another directory
# will cause the lambda to crash.
result_path = '/tmp/results.mjpeg'
# Create the FIFO file if it doesn't exist.
if not os.path.exists(result_path):
os.mkfifo(result_path)
# This call will block until a consumer is available
with open(result_path, 'w') as fifo_file:
while not self.stop_request.isSet():
try:
# Write the data to the FIFO file. This call will block
# meaning the code will come to a halt here until a consumer
# is available.
fifo_file.write(self.frame.tobytes())
except IOError:
continue
def set_frame_data(self, frame):
""" Method updates the image data. This currently encodes the
numpy array to jpg but can be modified to support other encodings.
frame - Numpy array containing the image data tof the next frame
in the project stream.
"""
ret, jpeg = cv2.imencode('.jpg', cv2.resize(frame, self.resolution))
if not ret:
raise Exception('Failed to set frame data')
self.frame = jpeg
def join(self):
self.stop_request.set()
def greengrass_infinite_infer_run():
""" Entry point of the lambda function"""
try:
model_type, output_map, client, iot_topic, local_display, model_path, model, detection_threshold, input_height, input_width = init_greengrass()
# Do inference until the lambda is killed.
while True:
t1 = Thread(target = capture_img, args=[model_type, output_map, client, iot_topic, local_display, model_path, model, detection_threshold, input_height, input_width])
t2 = Thread(target = upload_image)
t1.start()
t2.start()
t1.join()
t2.join()
except Exception as ex:
client.publish(topic=iot_topic, payload='Error in face detection lambda: {}'.format(ex))
greengrass_infinite_infer_run()