Вы можете изменить свою матрицу до 1-D тензора до tf.nn.top_k()
, а затем вычислить 2-D индексы из 1-D:
x = tf.random_uniform((3, 4))
x_shape = tf.shape(x)
k = 3
top_values, top_indices = tf.nn.top_k(tf.reshape(x, (-1,)), k)
top_indices = tf.stack(((top_indices // x_shape[1]), (top_indices % x_shape[1])), -1)
with tf.Session() as sess:
mat, val, ind = sess.run([x, top_values, top_indices])
print(mat)
# [[ 0.2154634 0.52707899 0.29711092 0.74310601]
# [ 0.61274767 0.82408106 0.27242708 0.25479805]
# [ 0.25863791 0.16790807 0.95585966 0.51889324]]
print(val)
# [ 0.95585966 0.82408106 0.74310601]
print(ind)
# [[2 2]
# [1 1]
# [0 3]]