Я тренирую модель для набора данных fruits360 из kaggle.У меня 0 плотных слоев и 3 сверточных слоя в моей модели керас.Моя форма ввода (60,60,3), поскольку изображения загружаются в формате RGB.Пожалуйста, помогите мне разобраться, в чем проблема с этой моделью, почему она не тренируется должным образом.Я пробовал использовать разные комбинации слоев, но точность и потери остаются неизменными независимо от того, что вы меняете.
Ниже приводится модель:
dense_layers = [0]
layer_sizes = [64]
conv_layers = [3]
for dense_layer in dense_layers:
for layer_size in layer_sizes:
for conv_layer in conv_layers:
NAME = "{}-conv-{}-nodes-{}-dense-{}".format(conv_layer, layer_size, dense_layer, int(time.time()))
print(NAME)
model = Sequential()
model.add(Conv2D(layer_size, (3, 3), input_shape=(60, 60, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
for l in range(conv_layer-1):
model.add(Conv2D(layer_size, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
for _ in range(dense_layer):
model.add(Dense(layer_size))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))
tensorboard = TensorBoard(log_dir="logs/")
model.compile(loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'],
)
model.fit(X_norm, y,
batch_size=32,
epochs=10,
validation_data=(X_norm_test,y_test),
callbacks=[tensorboard])
, но точность остается постоянной следующим образом:
Epoch 1/10
42798/42798 [==============================] - 27s 641us/step - loss: nan - acc: 0.0115 - val_loss: nan - val_acc: 0.0114
Epoch 2/10
42798/42798 [==============================] - 27s 638us/step - loss: nan - acc: 0.0115 - val_loss: nan - val_acc: 0.0114
Epoch 3/10
42798/42798 [==============================] - 27s 637us/step - loss: nan - acc: 0.0115 - val_loss: nan - val_acc: 0.0114
Epoch 4/10
42798/42798 [==============================] - 27s 635us/step - loss: nan - acc: 0.0115 - val_loss: nan - val_acc: 0.0114
Epoch 5/10
42798/42798 [==============================] - 27s 635us/step - loss: nan - acc: 0.0115 - val_loss: nan - val_acc: 0.0114
Epoch 6/10
42798/42798 [==============================] - 27s 631us/step - loss: nan - acc: 0.0115 - val_loss: nan - val_acc: 0.0114
Epoch 7/10
42798/42798 [==============================] - 27s 631us/step - loss: nan - acc: 0.0115 - val_loss: nan - val_acc: 0.0114
Epoch 8/10
42798/42798 [==============================] - 27s 631us/step - loss: nan - acc: 0.0115 - val_loss: nan - val_acc: 0.0114
Epoch 9/10
42798/42798 [==============================] - 27s 635us/step - loss: nan - acc: 0.0115 - val_loss: nan - val_acc: 0.0114
Epoch 10/10
42798/42798 [==============================] - 27s 626us/step - loss: nan - acc: 0.0115 - val_loss: nan - val_acc: 0.0114
что я могу сделать, чтобы правильно обучить эту модель.Для повышения точности.