Я новичок в CUDA.Поэтому, пожалуйста, имейте в виду вопросы с тривиальными решениями, если таковые имеются.
Я пытаюсь найти сумму 100M плавающих элементов массива.Из следующего кода видно, что я использовал сокращенное ядро и тягу. Я полагаю, ядро хранит сумму в g_odata[0]
.Поскольку все элементы одинаковы в g_idata
, результат должен быть n*g_idata[1]
.Но вы могли ясно видеть, что результаты неверны для них обоих.
- Что я делаю не так?Как я могу достичь своей цели?
- Каждое ядро сокращения, которое я нашел, предназначено для целочисленного типа данных.Например, настоятельно рекомендуется Оптимизация параллельного сокращения в CUDA. .Есть ли какая-то конкретная причина для этого?
Вот мой код:
#include <iostream>
#include <math.h>
#include <stdlib.h>
#include <iomanip>
#include <thrust/reduce.h>
#include <thrust/execution_policy.h>
using namespace std;
__global__ void reduce(float *g_idata, float *g_odata) {
__shared__ float sdata[256];
int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[threadIdx.x] = g_idata[i];
__syncthreads();
for (int s=1; s < blockDim.x; s *=2)
{
int index = 2 * s * threadIdx.x;;
if (index < blockDim.x)
{
sdata[index] += sdata[index + s];
}
__syncthreads();
}
if (threadIdx.x == 0)
atomicAdd(g_odata,sdata[0]);
}
int main(void){
unsigned int n=pow(10,8);
float *g_idata, *g_odata;
cudaMallocManaged(&g_idata, n*sizeof(float));
cudaMallocManaged(&g_odata, n*sizeof(float));
int blockSize = 32;
int numBlocks = (n + blockSize - 1) / blockSize;
for(int i=0;i<n;i++){g_idata[i]=6.1;g_odata[i]=0;}
reduce<<<numBlocks, blockSize>>>(g_idata, g_odata);
cudaDeviceSynchronize();
cout << g_odata[0] << "\t" << (float)n*g_idata[1] << "\t"<< (float)n*g_idata[1]-g_odata[0]<<endl;
g_odata[0]=thrust::reduce(thrust::device, g_idata, g_idata+n);
cout << g_odata[0] << "\t" << (float)n*g_idata[1] << "\t"<< (float)n*g_idata[1]-g_odata[0]<<endl;
cudaFree(g_idata);
cudaFree(g_odata);
}
Результат:
6.0129e+08 6.1e+08 8.7097e+06
6.09986e+08 6.1e+08 13824
Я использую CUDA 10. nvcc --version
:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130
Подробная информация о моем GPU DeviceQuery
:
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GTX 750"
CUDA Driver Version / Runtime Version 10.0 / 10.0
CUDA Capability Major/Minor version number: 5.0
Total amount of global memory: 1999 MBytes (2096168960 bytes)
( 4) Multiprocessors, (128) CUDA Cores/MP: 512 CUDA Cores
GPU Max Clock rate: 1110 MHz (1.11 GHz)
Memory Clock rate: 2505 Mhz
Memory Bus Width: 128-bit
L2 Cache Size: 2097152 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device supports Compute Preemption: No
Supports Cooperative Kernel Launch: No
Supports MultiDevice Co-op Kernel Launch: No
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.0, CUDA Runtime Version = 10.0, NumDevs = 1
Result = PASS
Заранее спасибо.