У меня есть данные с 3 измерениями и одинаковым диапазоном дат для каждой комбинации и числовой меткой.Моя цель - добавить столбец со средним значением метки за предыдущие n дней.
У меня есть рабочее решение, но оно занимает целую вечность (~ 20 минут для 2,270,400 строк в 2,400 возможных комбинациях измерений).Я предполагаю, что основной проблемой является поиск d.loc
как метод вставки.
У вас есть предложения, как улучшить производительность?Я также очень доволен другим подходом, ведущим к тому же результату.
Код для настройки теста:
## create data to simulate
import pandas as pd
import random
## create test dataframes
df1 = pd.DataFrame({'A':[1,2,3,4,5,6,7,8,9,10,11,12]})
df2 = pd.DataFrame({'B':["r","s","t","u","v","w","x","y","z"]})
df3 = pd.DataFrame({'C':["a","b","c","d","e","f","g","k","h"]})
numdays = 600
date_list = pd.date_range(pd.datetime.today(), periods=numdays).tolist()
df4 = pd.DataFrame({'date':pd.to_datetime(date_list)})
df4['date'] = df4['date'].dt.date
## add dummy keys
df1['key'] = 0
df2['key'] = 0
df3['key'] = 0
df4['key'] = 0
## merge all together
dfn = df1.merge(df2, how='outer',on="key")
dfn = dfn.merge(df3, how='outer',on="key")
dfn = dfn.merge(df4, how='outer',on="key")
## drop dummy key
dfn.drop(columns=['key'],inplace=True)
## add vector
dfn['dim_vector'] = dfn.apply(lambda row: str(row.A) + '_' + row.B + '_' + row.C, axis=1)
## add random labels
dfn['label'] = dfn.apply(lambda x: random.randrange(0,10, 1),axis=1)
## set date as index
dfn = dfn.set_index(dfn['date'])
Мое (медленное) решение:
def add_last_n_days_avg_with_days_at_index(df,match_on_col='dim_vector',label_col='label',count_of_days=7,round_to=0):
vectors = df[match_on_col].unique()
new_label_col_name = label_col + '_'+str(count_of_days)+'D'
for vector in vectors:
chunk = df.loc[df[match_on_col] == vector].copy()
chunk[new_label_col_name] = chunk[label_col].rolling(count_of_days,count_of_days,axis=0).mean()
chunk[new_label_col_name] = chunk[new_label_col_name].shift()
df.loc[df[match_on_col] == vector,new_label_col_name] = round(chunk[new_label_col_name],round_to)
add_last_n_days_avg_with_days_at_index(df=dfn,match_on_col='dim_vector',label_col='label',count_of_days=7,round_to=0)
dfn.head(50)
Результат, если там только 9 дней:
date A B C date dim_vector label label_7D
2018-12-14 1 r a 2018-12-14 1_r_a 1 NaN
2018-12-15 1 r a 2018-12-15 1_r_a 1 NaN
2018-12-16 1 r a 2018-12-16 1_r_a 0 NaN
2018-12-17 1 r a 2018-12-17 1_r_a 3 NaN
2018-12-18 1 r a 2018-12-18 1_r_a 0 NaN
2018-12-19 1 r a 2018-12-19 1_r_a 6 NaN
2018-12-20 1 r a 2018-12-20 1_r_a 7 NaN
2018-12-21 1 r a 2018-12-21 1_r_a 3 3.0
2018-12-22 1 r a 2018-12-22 1_r_a 0 3.0
2018-12-14 1 r b 2018-12-14 1_r_b 5 NaN
2018-12-15 1 r b 2018-12-15 1_r_b 2 NaN
2018-12-16 1 r b 2018-12-16 1_r_b 5 NaN
2018-12-17 1 r b 2018-12-17 1_r_b 2 NaN
2018-12-18 1 r b 2018-12-18 1_r_b 3 NaN
2018-12-19 1 r b 2018-12-19 1_r_b 0 NaN
2018-12-20 1 r b 2018-12-20 1_r_b 8 NaN
2018-12-21 1 r b 2018-12-21 1_r_b 2 4.0
2018-12-22 1 r b 2018-12-22 1_r_b 2 3.0