У меня есть авто-кодер, и у него есть два выхода, и я хочу вычислить BER между входом и выходом, но у меня есть несколько вопросов.1. для расчета есть ли в Python какая-либо функция для этого?например, в Matlab у нас есть biterr или psnr для сравнения изображений по ошибке или незаметности.у нас есть такие же функции в Matlab?2. можем ли мы использовать эти параметры в качестве функции потерь?например, я использую mse как функцию потерь.Можно ли использовать psnr вместо него?как я могу это сделать?Я прикрепил свой код здесь.
#-----------------------including related inputs-------------------------------
from keras.layers import Input, Concatenate, GaussianNoise,Dropout
from keras.layers import Conv2D
from keras.models import Model
from keras.datasets import mnist
from keras.callbacks import TensorBoard
from keras import backend as K
from keras import layers
import matplotlib.pyplot as plt
import tensorflow as tf
import keras as Kr
import numpy as np
import pylab as pl
import matplotlib.cm as cm
import keract
from tensorflow.python.keras.layers import Lambda;
#-----------------building w train---------------------------------------------
w_expand=np.zeros((49999,28,28),dtype='float32')
wv_expand=np.zeros((9999,28,28),dtype='float32')
wt_random=np.random.randint(2, size=(49999,4,4))
wt_random=wt_random.astype(np.float32)
wv_random=np.random.randint(2, size=(9999,4,4))
wv_random=wv_random.astype(np.float32)
w_expand[:,:4,:4]=wt_random
wv_expand[:,:4,:4]=wv_random
x,y,z=w_expand.shape
w_expand=w_expand.reshape((x,y,z,1))
x,y,z=wv_expand.shape
wv_expand=wv_expand.reshape((x,y,z,1))
#-----------------building w test---------------------------------------------
w_test = np.random.randint(2,size=(1,4,4))
w_test=w_test.astype(np.float32)
wt_expand=np.zeros((1,28,28),dtype='float32')
wt_expand[:,0:4,0:4]=w_test
wt_expand=wt_expand.reshape((1,28,28,1))
#wt_expand=np.repeat(wt_expand,10000,0)
#-----------------------encoder------------------------------------------------
#------------------------------------------------------------------------------
wtm=Input((28,28,1))
image = Input((28, 28, 1))
conv1 = Conv2D(64, (3, 3), activation='relu', padding='same', name='convl1e')(image)
conv2 = Conv2D(64, (3, 3), activation='relu', padding='same', name='convl2e')(conv1)
conv3 = Conv2D(64, (3, 3), activation='relu', padding='same', name='convl3e')(conv2)
#conv3 = Conv2D(8, (3, 3), activation='relu', padding='same', name='convl3e', kernel_initializer='Orthogonal',bias_initializer='glorot_uniform')(conv2)
BN=BatchNormalization()(conv3)
DrO1=Dropout(0.25,name='Dro1')(BN)
encoded = Conv2D(1, (3, 3), activation='relu', padding='same',name='encoded_I')(DrO1)
#-----------------------adding watermark---------------------------------------
add_const = Kr.layers.Lambda(lambda x: x[0] + x[1])
encoded_merged = add_const([encoded,wtm])
#-----------------------decoder------------------------------------------------
#------------------------------------------------------------------------------
deconv1 = Conv2D(64, (3, 3), activation='elu', padding='same', name='convl1d')(encoded_merged)
deconv2 = Conv2D(64, (3, 3), activation='elu', padding='same', name='convl2d')(deconv1)
deconv3 = Conv2D(64, (3, 3), activation='elu',padding='same', name='convl3d')(deconv2)
BNd=BatchNormalization()(deconv3)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same', name='decoder_output')(DrO2)
model=Model(inputs=[image,wtm],outputs=decoded)
#----------------------w extraction------------------------------------
convw1 = Conv2D(64, (3,3), activation='elu', padding='same', name='conl1w')(decoded)
convw2 = Conv2D(64, (3, 3), activation='elu', padding='same', name='convl2w')(convw1)
convw3 = Conv2D(64, (3, 3), activation='elu', padding='same', name='conl3w')(convw2)
BNed=BatchNormalization()(convw3)
DrO3=Dropout(0.25, name='DrO3')(BNed)
pred_w = Conv2D(1, (1, 1), activation='sigmoid', padding='same', name='reconstructed_W')(DrO3)
# reconsider activation (is W positive?)
# should be filter=1 to match W
watermark_extraction=Model(inputs=[image,wtm],outputs=[decoded,pred_w])
watermark_extraction.summary()
#----------------------training the model--------------------------------------
#------------------------------------------------------------------------------
#----------------------Data preparation----------------------------------------
(x_train, _), (x_test, _) = mnist.load_data()
x_validation=x_train[1:10000,:,:]
x_train=x_train[10001:60000,:,:]
#
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_validation = x_validation.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) # adapt this if using `channels_first` image data format
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1)) # adapt this if using `channels_first` image data format
x_validation = np.reshape(x_validation, (len(x_validation), 28, 28, 1))
#---------------------compile and train the model------------------------------
# is accuracy sensible metric for this model?
watermark_extraction.compile(optimizer='SGD', loss={'decoder_output':'mse','reconstructed_W':'binary_crossentropy'}, metrics=['mae'])
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=200)
rlrp = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_delta=1E-7, verbose=1)
history=watermark_extraction.fit([x_train,w_expand], [x_train,w_expand],
epochs=1000,
batch_size=32,
validation_data=([x_validation,wv_expand], [x_validation,wv_expand]),
callbacks=[TensorBoard(log_dir='E:/tmp/AutewithW200', histogram_freq=0, write_graph=False),rlrp,es])
model.summary()