У меня есть экземпляр виртуальной машины в Google Cloud Compute Engine (Ubuntu 16.04).На виртуальной машине я запустил программу, которая использует реализацию TensorFlow движка DC-TTS, которая представляет собой модель преобразования текста в речь от https://github.com/Kyubyong/dc_tts. Все работает хорошо, я могу генерировать аудиофайл в сэмплах папка под управлением python3 synthesize.py в терминале SSH.Теперь я хочу написать интерфейсное приложение на JAVA для ПК.Приложение будет общаться с этим облаком.Поэтому у меня есть вопросы:
Как мне связать интерфейсное приложение, написанное на JAVA на ПК, с фоном в облаке (написано на Python)?Сценарий: используя кнопку в приложении переднего плана, я отправляю введенный текст в облако для TTS, и я должен получить сгенерированный аудиофайл из Google Cloud.
В файле синтезировать.Функция py exist, которая загружает библиотеки Tensorflow и восстанавливает параметры Text2Mel и SSRN при каждом запуске этого скрипта.Что я могу сделать, чтобы данные загружались только один раз, а не каждый раз после вызова методов синтеза (потому что это занимает много времени)?Мы предполагаем, что мы подключили облачный бэкэнд с внешним интерфейсом, как в пункте 1.
Это содержимое synthesize.py :
# -*- coding: utf-8 -*-
# /usr/bin/python2
'''
By kyubyong park. kbpark.linguist@gmail.com.
https://www.github.com/kyubyong/dc_tts
'''
from __future__ import print_function
import os
from hyperparams import Hyperparams as hp
import numpy as np
import tensorflow as tf
from train import Graph
from utils import *
from data_load import load_data
from scipy.io.wavfile import write
from tqdm import tqdm
def synthesize():
# Load data
L = load_data("synthesize")
# Load graph
g = Graph(mode="synthesize"); print("Graph loaded")
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# Restore parameters
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Text2Mel')
saver1 = tf.train.Saver(var_list=var_list)
saver1.restore(sess, tf.train.latest_checkpoint(hp.logdir + "-1"))
print("Text2Mel Restored!")
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'SSRN') + \
tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'gs')
saver2 = tf.train.Saver(var_list=var_list)
saver2.restore(sess, tf.train.latest_checkpoint(hp.logdir + "-2"))
print("SSRN Restored!")
# Feed Forward
## mel
Y = np.zeros((len(L), hp.max_T, hp.n_mels), np.float32)
prev_max_attentions = np.zeros((len(L),), np.int32)
for j in tqdm(range(hp.max_T)):
_gs, _Y, _max_attentions, _alignments = \
sess.run([g.global_step, g.Y, g.max_attentions, g.alignments],
{g.L: L,
g.mels: Y,
g.prev_max_attentions: prev_max_attentions})
Y[:, j, :] = _Y[:, j, :]
prev_max_attentions = _max_attentions[:, j]
# Get magnitude
Z = sess.run(g.Z, {g.Y: Y})
# Generate wav files
if not os.path.exists(hp.sampledir): os.makedirs(hp.sampledir)
for i, mag in enumerate(Z):
print("Working on file", i+1)
wav = spectrogram2wav(mag)
write(hp.sampledir + "/{}.wav".format(i+1), hp.sr, wav)
if __name__ == '__main__':
synthesize()
print("Done")