Несмотря на то, что ваш пример не является лучшим вариантом использования для кэширования обещаний (повторное создание и обещание кэширования, которое содержит одно и то же значение для каждого шага итерации, не имеет особого смысла), вы на самом деле обнаружили ошибку условия гонки в CachingUpstream<T>
класс.
Я провел несколько экспериментов, чтобы выяснить, что происходит, и вот мои выводы.Во-первых, я создал обещание со значением 12
, которое обеспечивает пользовательскую (более детальную) реализацию CachingUpstream<T>
объекта.Я взял тело Promise.value(12)
и переопределил встроенный метод cacheResultIf(Predicate<? super ExecResult<T>> shouldCache)
, который по умолчанию возвращает CachingUpstream<T>
экземпляр:
Promise<Integer> p = new DefaultPromise<Integer>(down -> DefaultExecution.require().delimit(down::error, continuation ->
continuation.resume(() -> down.success(12))
)) {
@Override
public Promise<Integer> cacheResultIf(Predicate<? super ExecResult<Integer>> shouldCache) {
return transform(up -> {
return new TestCachingUpstream<>(up, shouldCache.function(Duration.ofSeconds(-1), Duration.ZERO));
});
}
};
Далее я создал класс TestCachingUpstream<T>
просто скопировав тело исходного класса, и я добавил несколько вещей, например
- Я сделал каждые
TestCachingUpstream<T>
с внутренним идентификатором (случайным UUID), чтобы упростить отслеживание выполнения обещания. - Я добавил несколько подробных сообщений журнала, когда во время выполнения обещания произошли определенные события.
Я не изменил реализацию методов, я просто хотел отследить поток выполнения исохранить оригинальную реализацию как есть.Мой пользовательский класс выглядел так:
private static class TestCachingUpstream<T> implements Upstream<T> {
private final String id = UUID.randomUUID().toString();
private Upstream<? extends T> upstream;
private final Clock clock;
private final AtomicReference<TestCachingUpstream.Cached<? extends T>> ref = new AtomicReference<>();
private final Function<? super ExecResult<T>, Duration> ttlFunc;
private final AtomicBoolean pending = new AtomicBoolean();
private final AtomicBoolean draining = new AtomicBoolean();
private final Queue<Downstream<? super T>> waiting = PlatformDependent.newMpscQueue();
public TestCachingUpstream(Upstream<? extends T> upstream, Function<? super ExecResult<T>, Duration> ttl) {
this(upstream, ttl, Clock.systemUTC());
}
@VisibleForTesting
TestCachingUpstream(Upstream<? extends T> upstream, Function<? super ExecResult<T>, Duration> ttl, Clock clock) {
this.upstream = upstream;
this.ttlFunc = ttl;
this.clock = clock;
}
private void tryDrain() {
if (draining.compareAndSet(false, true)) {
try {
TestCachingUpstream.Cached<? extends T> cached = ref.get();
if (needsFetch(cached)) {
if (pending.compareAndSet(false, true)) {
Downstream<? super T> downstream = waiting.poll();
System.out.printf("[%s] [%s] no pending execution and downstream is %s and cached is %s...%n", id, Thread.currentThread().getName(), downstream == null ? "null" : "not null", cached);
if (downstream == null) {
pending.set(false);
} else {
try {
yield(downstream);
} catch (Throwable e) {
System.out.printf("[%s] [%s] calling receiveResult after catching exception %s%n", id, Thread.currentThread().getName(), e.getClass());
receiveResult(downstream, ExecResult.of(Result.error(e)));
}
}
}
} else {
System.out.printf("[%s] [%s] upstream does not need fetching...%n", id, Thread.currentThread().getName());
Downstream<? super T> downstream = waiting.poll();
while (downstream != null) {
downstream.accept(cached.result);
downstream = waiting.poll();
}
}
} finally {
draining.set(false);
}
}
if (!waiting.isEmpty() && !pending.get() && needsFetch(ref.get())) {
tryDrain();
}
}
private boolean needsFetch(TestCachingUpstream.Cached<? extends T> cached) {
return cached == null || (cached.expireAt != null && cached.expireAt.isBefore(clock.instant()));
}
private void yield(final Downstream<? super T> downstream) throws Exception {
System.out.printf("[%s] [%s] calling yield... %s %n", id, Thread.currentThread().getName(), upstream == null ? "upstream is null..." : "");
upstream.connect(new Downstream<T>() {
public void error(Throwable throwable) {
System.out.printf("[%s] [%s] upstream.connect.error%n", id, Thread.currentThread().getName());
receiveResult(downstream, ExecResult.of(Result.<T>error(throwable)));
}
@Override
public void success(T value) {
System.out.printf("[%s] [%s] upstream.connect.success%n", id, Thread.currentThread().getName());
receiveResult(downstream, ExecResult.of(Result.success(value)));
}
@Override
public void complete() {
System.out.printf("[%s] [%s] upstream.connect.complete%n", id, Thread.currentThread().getName());
receiveResult(downstream, CompleteExecResult.get());
}
});
}
@Override
public void connect(Downstream<? super T> downstream) throws Exception {
TestCachingUpstream.Cached<? extends T> cached = this.ref.get();
if (needsFetch(cached)) {
Promise.<T>async(d -> {
waiting.add(d);
tryDrain();
}).result(downstream::accept);
} else {
downstream.accept(cached.result);
}
}
private void receiveResult(Downstream<? super T> downstream, ExecResult<T> result) {
Duration ttl = Duration.ofSeconds(0);
try {
ttl = ttlFunc.apply(result);
} catch (Throwable e) {
if (result.isError()) {
//noinspection ThrowableResultOfMethodCallIgnored
result.getThrowable().addSuppressed(e);
} else {
result = ExecResult.of(Result.error(e));
}
}
Instant expiresAt;
if (ttl.isNegative()) {
expiresAt = null; // eternal
System.out.printf("[%s] [%s] releasing upstream... (%s) %n", id, Thread.currentThread().getName(), result.toString());
upstream = null; // release
} else if (ttl.isZero()) {
expiresAt = clock.instant().minus(Duration.ofSeconds(1));
} else {
expiresAt = clock.instant().plus(ttl);
}
ref.set(new TestCachingUpstream.Cached<>(result, expiresAt));
pending.set(false);
downstream.accept(result);
tryDrain();
}
static class Cached<T> {
final ExecResult<T> result;
final Instant expireAt;
Cached(ExecResult<T> result, Instant expireAt) {
this.result = result;
this.expireAt = expireAt;
}
}
}
Я сократил количество шагов в цикле for с 25 до 3, чтобы вывод консоли был более лаконичным.
Успешное выполнение теста (без условия гонки)
Давайте посмотрим, как выглядит поток правильного выполнения:
[c9a70043-36b8-44f1-b8f3-dd8ce30ca0ef] [ratpack-compute-22-2] no pending execution and downstream is not null and cached is null...
[c9a70043-36b8-44f1-b8f3-dd8ce30ca0ef] [ratpack-compute-22-2] calling yield...
[c9a70043-36b8-44f1-b8f3-dd8ce30ca0ef] [ratpack-compute-22-2] upstream.connect.success
[c9a70043-36b8-44f1-b8f3-dd8ce30ca0ef] [ratpack-compute-22-2] releasing upstream... (ExecResult{complete=false, error=null, value=12})
[c9a70043-36b8-44f1-b8f3-dd8ce30ca0ef] [ratpack-compute-22-2] upstream does not need fetching...
[5c740555-3638-4f3d-8a54-162d37bcb695] [ratpack-compute-22-4] no pending execution and downstream is not null and cached is null...
[5c740555-3638-4f3d-8a54-162d37bcb695] [ratpack-compute-22-4] calling yield...
[5c740555-3638-4f3d-8a54-162d37bcb695] [ratpack-compute-22-4] upstream.connect.success
[5c740555-3638-4f3d-8a54-162d37bcb695] [ratpack-compute-22-4] releasing upstream... (ExecResult{complete=false, error=null, value=12})
[5c740555-3638-4f3d-8a54-162d37bcb695] [ratpack-compute-22-4] upstream does not need fetching...
[c47a8f8a-5f93-4d2f-ac18-63ed76848b9f] [ratpack-compute-22-6] no pending execution and downstream is not null and cached is null...
[c47a8f8a-5f93-4d2f-ac18-63ed76848b9f] [ratpack-compute-22-6] calling yield...
[c47a8f8a-5f93-4d2f-ac18-63ed76848b9f] [ratpack-compute-22-6] upstream.connect.success
[c47a8f8a-5f93-4d2f-ac18-63ed76848b9f] [ratpack-compute-22-6] releasing upstream... (ExecResult{complete=false, error=null, value=12})
[c47a8f8a-5f93-4d2f-ac18-63ed76848b9f] [ratpack-compute-22-6] upstream does not need fetching...
Как вы можете видеть каждую итерациювызывает кешированное обещание выдать 5 консольных логов.
Иэтот сценарий повторяется для всех трех обещаний, созданных внутри цикла for.
Неудачное выполнение теста (условие гонки)
Запуск теста с этими System.out.printf()
тестом проваливался в несколько раз реже, чаще всегопотому что это опера ввода / выводаЭта операция потребляет некоторые циклы ЦП, а десинхронизированная часть кода имеет еще несколько циклов, чтобы избежать состояния гонки.Однако это все еще происходит, и теперь давайте посмотрим, как выглядит результат неудачного теста:
[088a234e-17d0-4f3a-bb7c-ec6e4a464fa2] [ratpack-compute-786-2] no pending execution and downstream is not null and cached is null...
[088a234e-17d0-4f3a-bb7c-ec6e4a464fa2] [ratpack-compute-786-2] calling yield...
[088a234e-17d0-4f3a-bb7c-ec6e4a464fa2] [ratpack-compute-786-2] upstream.connect.success
[088a234e-17d0-4f3a-bb7c-ec6e4a464fa2] [ratpack-compute-786-2] releasing upstream... (ExecResult{complete=false, error=null, value=12})
[088a234e-17d0-4f3a-bb7c-ec6e4a464fa2] [ratpack-compute-786-3] no pending execution and downstream is not null and cached is null...
[088a234e-17d0-4f3a-bb7c-ec6e4a464fa2] [ratpack-compute-786-3] calling yield... upstream is null...
[4f00c50a-4706-4d22-b905-096934b7c374] [ratpack-compute-786-4] no pending execution and downstream is not null and cached is null...
[4f00c50a-4706-4d22-b905-096934b7c374] [ratpack-compute-786-4] calling yield...
[4f00c50a-4706-4d22-b905-096934b7c374] [ratpack-compute-786-4] upstream.connect.success
[4f00c50a-4706-4d22-b905-096934b7c374] [ratpack-compute-786-4] releasing upstream... (ExecResult{complete=false, error=null, value=12})
[4f00c50a-4706-4d22-b905-096934b7c374] [ratpack-compute-786-4] upstream does not need fetching...
[8b27d16f-dc91-4341-b630-cf5c959c45e8] [ratpack-compute-786-6] no pending execution and downstream is not null and cached is null...
[8b27d16f-dc91-4341-b630-cf5c959c45e8] [ratpack-compute-786-6] calling yield...
[8b27d16f-dc91-4341-b630-cf5c959c45e8] [ratpack-compute-786-6] upstream.connect.success
[8b27d16f-dc91-4341-b630-cf5c959c45e8] [ratpack-compute-786-6] releasing upstream... (ExecResult{complete=false, error=null, value=12})
[8b27d16f-dc91-4341-b630-cf5c959c45e8] [ratpack-compute-786-6] upstream does not need fetching...
[088a234e-17d0-4f3a-bb7c-ec6e4a464fa2] [ratpack-compute-786-3] calling receiveResult after catching exception class java.lang.NullPointerException
[088a234e-17d0-4f3a-bb7c-ec6e4a464fa2] [ratpack-compute-786-3] releasing upstream... (ExecResult{complete=false, error=java.lang.NullPointerException, value=null})
java.lang.NullPointerException
at app.AnotherPromiseTest$TestCachingUpstream.yield(AnotherPromiseTest.java:120)
at app.AnotherPromiseTest$TestCachingUpstream.tryDrain(AnotherPromiseTest.java:89)
at app.AnotherPromiseTest$TestCachingUpstream.lambda$connect$0(AnotherPromiseTest.java:146)
at ratpack.exec.internal.DefaultExecution.lambda$null$2(DefaultExecution.java:122)
at ratpack.exec.internal.DefaultExecution$SingleEventExecStream.exec(DefaultExecution.java:489)
at ratpack.exec.internal.DefaultExecution.exec(DefaultExecution.java:216)
at ratpack.exec.internal.DefaultExecution.exec(DefaultExecution.java:209)
at ratpack.exec.internal.DefaultExecution.drain(DefaultExecution.java:179)
at ratpack.exec.internal.DefaultExecution.<init>(DefaultExecution.java:92)
at ratpack.exec.internal.DefaultExecController$1.lambda$start$0(DefaultExecController.java:195)
at io.netty.util.concurrent.PromiseTask.run(PromiseTask.java:73)
at io.netty.util.concurrent.AbstractEventExecutor.safeExecute(AbstractEventExecutor.java:163)
at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:404)
at io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:309)
at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:886)
at ratpack.exec.internal.DefaultExecController$ExecControllerBindingThreadFactory.lambda$newThread$0(DefaultExecController.java:136)
at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
at java.lang.Thread.run(Thread.java:748)
Это результат неудачного теста - я запустил его в IntelliJ IDEA и настроил выполнение этоготест повторить до отказа.Мне потребовалось некоторое время, чтобы этот тест не удался, но после того, как он несколько раз выполнялся, он, наконец, не прошел итерацию с номером 1500. В этом случае мы можем видеть, что условие гонки произошло с первым обещанием, созданным в цикле for.Вы можете видеть, что после освобождения вышестоящего объекта внутри receiveResult()
метода
[088a234e-17d0-4f3a-bb7c-ec6e4a464fa2] [ratpack-compute-786-2] releasing upstream... (ExecResult{complete=false, error=null, value=12})
и вызова tryDrain
перед выходом из метода, следующее выполнение кэшированного обещания еще не увидело ранее кэшированного результата и дошло дометод yield(downstream)
снова.После upstream
объект уже был освобожден, установив его значение в null
.И метод yield(downstream)
ожидает, что вышестоящий объект инициализирован правильно, в противном случае он выбрасывает NPE.
Я пытался отладить метод:
private boolean needsFetch(TestCachingUpstream.Cached<? extends T> cached) {
return cached == null || (cached.expireAt != null && cached.expireAt.isBefore(clock.instant()));
}
Этот метод решает, нужно ли извлекать кэшированное обещание.Однако, когда я добавил какие-либо операторы регистрации, это начало вызывать StackOverflowError
.Я предполагаю, что в редких случаях cached.expireAt.isBefore(clock.instant())
возвращает false
, потому что cached
объект происходит от AtomicReference
, поэтому этот объект должен быть правильно передан между выполнением методов.
А вот и полный тестовый классЯ использовал в своих экспериментах:
import com.google.common.annotations.VisibleForTesting;
import io.netty.util.internal.PlatformDependent;
import org.junit.Test;
import ratpack.exec.*;
import ratpack.exec.internal.CompleteExecResult;
import ratpack.exec.internal.DefaultExecution;
import ratpack.exec.internal.DefaultPromise;
import ratpack.exec.util.ParallelBatch;
import ratpack.func.Function;
import ratpack.func.Predicate;
import ratpack.test.exec.ExecHarness;
import java.time.Clock;
import java.time.Duration;
import java.time.Instant;
import java.util.ArrayList;
import java.util.List;
import java.util.Queue;
import java.util.UUID;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicReference;
public class AnotherPromiseTest {
@Test
public void foo() throws Exception {
List<Promise<Integer>> promises = new ArrayList<>();
for (int i = 0; i < 3; i++) {
Promise<Integer> p = new DefaultPromise<Integer>(down -> DefaultExecution.require().delimit(down::error, continuation ->
continuation.resume(() -> down.success(12))
)) {
@Override
public Promise<Integer> cacheResultIf(Predicate<? super ExecResult<Integer>> shouldCache) {
return transform(up -> {
return new TestCachingUpstream<>(up, shouldCache.function(Duration.ofSeconds(-1), Duration.ZERO));
});
}
};
p = p.cache();
promises.add(p.map(v -> v + 1));
promises.add(p.map(v -> v + 2));
}
ExecHarness.yieldSingle(c -> ParallelBatch.of(promises).yield()).getValueOrThrow();
}
private static class TestCachingUpstream<T> implements Upstream<T> {
private final String id = UUID.randomUUID().toString();
private Upstream<? extends T> upstream;
private final Clock clock;
private final AtomicReference<TestCachingUpstream.Cached<? extends T>> ref = new AtomicReference<>();
private final Function<? super ExecResult<T>, Duration> ttlFunc;
private final AtomicBoolean pending = new AtomicBoolean();
private final AtomicBoolean draining = new AtomicBoolean();
private final Queue<Downstream<? super T>> waiting = PlatformDependent.newMpscQueue();
public TestCachingUpstream(Upstream<? extends T> upstream, Function<? super ExecResult<T>, Duration> ttl) {
this(upstream, ttl, Clock.systemUTC());
}
@VisibleForTesting
TestCachingUpstream(Upstream<? extends T> upstream, Function<? super ExecResult<T>, Duration> ttl, Clock clock) {
this.upstream = upstream;
this.ttlFunc = ttl;
this.clock = clock;
}
private void tryDrain() {
if (draining.compareAndSet(false, true)) {
try {
TestCachingUpstream.Cached<? extends T> cached = ref.get();
if (needsFetch(cached)) {
if (pending.compareAndSet(false, true)) {
Downstream<? super T> downstream = waiting.poll();
System.out.printf("[%s] [%s] no pending execution and downstream is %s and cached is %s...%n", id, Thread.currentThread().getName(), downstream == null ? "null" : "not null", cached);
if (downstream == null) {
pending.set(false);
} else {
try {
yield(downstream);
} catch (Throwable e) {
System.out.printf("[%s] [%s] calling receiveResult after catching exception %s%n", id, Thread.currentThread().getName(), e.getClass());
receiveResult(downstream, ExecResult.of(Result.error(e)));
}
}
}
} else {
System.out.printf("[%s] [%s] upstream does not need fetching...%n", id, Thread.currentThread().getName());
Downstream<? super T> downstream = waiting.poll();
while (downstream != null) {
downstream.accept(cached.result);
downstream = waiting.poll();
}
}
} finally {
draining.set(false);
}
}
if (!waiting.isEmpty() && !pending.get() && needsFetch(ref.get())) {
tryDrain();
}
}
private boolean needsFetch(TestCachingUpstream.Cached<? extends T> cached) {
return cached == null || (cached.expireAt != null && cached.expireAt.isBefore(clock.instant()));
}
private void yield(final Downstream<? super T> downstream) throws Exception {
System.out.printf("[%s] [%s] calling yield... %s %n", id, Thread.currentThread().getName(), upstream == null ? "upstream is null..." : "");
upstream.connect(new Downstream<T>() {
public void error(Throwable throwable) {
System.out.printf("[%s] [%s] upstream.connect.error%n", id, Thread.currentThread().getName());
receiveResult(downstream, ExecResult.of(Result.<T>error(throwable)));
}
@Override
public void success(T value) {
System.out.printf("[%s] [%s] upstream.connect.success%n", id, Thread.currentThread().getName());
receiveResult(downstream, ExecResult.of(Result.success(value)));
}
@Override
public void complete() {
System.out.printf("[%s] [%s] upstream.connect.complete%n", id, Thread.currentThread().getName());
receiveResult(downstream, CompleteExecResult.get());
}
});
}
@Override
public void connect(Downstream<? super T> downstream) throws Exception {
TestCachingUpstream.Cached<? extends T> cached = this.ref.get();
if (needsFetch(cached)) {
Promise.<T>async(d -> {
waiting.add(d);
tryDrain();
}).result(downstream::accept);
} else {
downstream.accept(cached.result);
}
}
private void receiveResult(Downstream<? super T> downstream, ExecResult<T> result) {
Duration ttl = Duration.ofSeconds(0);
try {
ttl = ttlFunc.apply(result);
} catch (Throwable e) {
if (result.isError()) {
//noinspection ThrowableResultOfMethodCallIgnored
result.getThrowable().addSuppressed(e);
} else {
result = ExecResult.of(Result.error(e));
}
}
Instant expiresAt;
if (ttl.isNegative()) {
expiresAt = null; // eternal
System.out.printf("[%s] [%s] releasing upstream... (%s) %n", id, Thread.currentThread().getName(), result.toString());
upstream = null; // release
} else if (ttl.isZero()) {
expiresAt = clock.instant().minus(Duration.ofSeconds(1));
} else {
expiresAt = clock.instant().plus(ttl);
}
ref.set(new TestCachingUpstream.Cached<>(result, expiresAt));
pending.set(false);
downstream.accept(result);
tryDrain();
}
static class Cached<T> {
final ExecResult<T> result;
final Instant expireAt;
Cached(ExecResult<T> result, Instant expireAt) {
this.result = result;
this.expireAt = expireAt;
}
}
}
}
Надеюсь, это поможет.