Я использую groupby
df.groupby(['ID','Activity']).Time.apply(list).apply(pd.Series).rename(columns={0:'starttime',1:'endtime'}).reset_index()
Out[251]:
ID Activity starttime endtime
0 a Bar 1.0 2.0
1 a Bathroom 3.0 4.0
2 a Outside 5.0 NaN
Или использую pivot_table
df.assign(I=df.groupby(['ID','Activity']).cumcount()).pivot_table(index=['ID','Activity'],columns='I',values='Time')
Out[258]:
I 0 1
ID Activity
a Bar 1.0 2.0
Bathroom 3.0 4.0
Outside 5.0 NaN
Обновление
df.assign(I=df.groupby(['ID','Activity']).cumcount()//2).groupby(['ID','Activity','I']).Time.apply(list).apply(pd.Series).rename(columns={0:'starttime',1:'endtime'}).reset_index()
Out[282]:
ID Activity I starttime endtime
0 a Bar 0 1.0 2.0
1 a Bar 1 6.0 7.0
2 a Bathroom 0 3.0 4.0
3 a Outside 0 5.0 NaN