Ваш df не соответствует ожидаемым результатам, он должен быть таким, чтобы соответствовать вашему выводу:
raw_data = {'Sub1':['A','B','C','D','E'],
'Sub2':['F','G','H','I','J'],
'Sub3':['K','L','M','N','O'],
'S_score1': [1, 0, 0, 6,0],
'F_score1' : [0, 1,0,0,0],
'L_score1' : [1,2,3,0,4],
'S_score2': [0, 1, 0, 6,0],
'F_score2' : [0, 1,0,0,0],
'L_score2' : [1,2,3,0,4],
'S_score3': [0, 1, 0, 6,0],
'F_score3' : [0, 1,0,0,0],
'L_score3' : [1,2,3,0,4]}
df2 = pd.DataFrame(raw_data, columns = ['Sub1','Sub2','Sub3','S_score1', 'F_score1','L_score1','S_score2', 'F_score2','L_score2','S_score3', 'F_score3','L_score3'])
Я добавил цикл для работы с разными метками.На этот раз совпадает с выходом.
import re
letters = ['S', 'F', 'L']
for letter in letters:
for row in range(0, len(df2)):
df_ = df2[[letter+'_score1', letter+'_score2', letter+'_score3']].iloc[row:row+1,0:3]
row_string = ''
for col in df_.columns:
if df_[col][row] >= 1:
row_string = row_string + ', '+ str(df2.iloc[row][df_.columns.get_loc(col)])
row_string = re.sub(r'^,', '', row_string)
if row_string == '':
df2.loc[row:,letter+'_text'] = 'You have not Scored any subject'
else:
df2.loc[row:,letter+'_text'] = 'You have scored on' + row_string
display(df2))
Sub1 Sub2 Sub3 S_score1 F_score1 L_score1 S_score2 F_score2 L_score2 S_score3 F_score3 L_score3 S_text F_text L_text
0 A F K 1 0 1 0 0 1 0 0 1 You have scored on A You have not Scored any subject You have scored on A, F, K
1 B G L 0 1 2 1 1 2 1 1 2 You have scored on G, L You have scored on B, G, L You have scored on B, G, L
2 C H M 0 0 3 0 0 3 0 0 3 You have not Scored any subject You have not Scored any subject You have scored on C, H, M
3 D I N 6 0 0 6 0 0 6 0 0 You have scored on D, I, N You have not Scored any subject You have not Scored any subject
4 E J O 0 0 4 0 0 4 0 0 4 You have not Scored any subject You have not Scored any subject You have scored on E, J, O
Я уверен, что есть более простые способы сделать это тоже.