Найти перекрывающиеся диапазоны по уровню фактора, используя R - PullRequest
0 голосов
/ 21 февраля 2019

Мне нужно найти перекрывающиеся диапазоны в одном наборе данных, но мне нужно найти их для каждого идентификатора или факторного уровня.Любая помощь будет принята с благодарностью!

    library(dplyr)

df_foo = read.table(
  textConnection("Class    Min  Max
A    500  630
A    100  200
B    100  200
A    210  310
A    200  210
B    210  310
A    510  530
B    200  210
A    705  800
B    500  630
B    510  530
B    705  800"), header = TRUE
)

c = outer(df_foo$Max, df_foo$Min, ">")
d = outer(df_foo$Min, df_foo$Max, "<")

df_foo %>% 
  mutate(Overlap = apply(c & d, 1, sum) > 1 
  )

Результат, который я получаю, выглядит следующим образом:

   Class Min Max Overlap
1      A 500 630    TRUE
2      A 100 200    TRUE
3      B 100 200    TRUE
4      A 210 310    TRUE
5      A 200 210    TRUE
6      B 210 310    TRUE
7      A 510 530    TRUE
8      B 200 210    TRUE
9      A 705 800    TRUE
10     B 500 630    TRUE
11     B 510 530    TRUE
12     B 705 800    TRUE

Но я хочу найти перекрытия между каждым уровнем A и B следующим образом:

   Class Min Max Overlap
1      A 500 630    TRUE
2      A 100 200    FALSE
3      B 100 200    FALSE
4      A 210 310    FALSE
5      A 200 210    FALSE
6      B 210 310    FALSE
7      A 510 530    TRUE
8      B 200 210    FALSE
9      A 705 800    FALSE
10     B 500 630    TRUE
11     B 510 530    TRUE
12     B 705 800    FALSE

Ответы [ 3 ]

0 голосов
/ 21 февраля 2019

У меня есть ответ в data.table, перевод на dplyr должен быть straigtworfard.Идея состоит в том, чтобы создать вектор предыдущего накопленного максимума для каждого класса:

df_foo <- setDT(df_foo)
df_foo[, shiftedmaxmax := c(NA,cummax(Max)[1:(.N-1)]),by = Class  ]


    Class Min Max shiftedmaxmax
 1:     A 100 200            NA
 2:     A 200 210           200
 3:     A 210 310           210
 4:     A 500 630           310
 5:     A 510 530           630
 6:     A 705 800           630
 7:     B 100 200            NA
 8:     B 200 210           200
 9:     B 210 310           210
10:     B 500 630           310
11:     B 510 530           630
12:     B 705 800           630

и сравнить минимум с предыдущим максимумом максимума (поэтому, если он уступает этому значению, текущая строкав диапазоне одной предыдущей строки)

df_foo[,superposed := Min < shiftedmaxmax]

    Class Min Max shiftedmaxmax superposed
 1:     A 100 200            NA         NA
 2:     A 200 210           200      FALSE
 3:     A 210 310           210      FALSE
 4:     A 500 630           310      FALSE
 5:     A 510 530           630       TRUE
 6:     A 705 800           630      FALSE
 7:     B 100 200            NA         NA
 8:     B 200 210           200      FALSE
 9:     B 210 310           210      FALSE
10:     B 500 630           310      FALSE
11:     B 510 530           630       TRUE
12:     B 705 800           630      FALSE

Отсутствует первое наложение, и вы можете получить его следующим образом:

df_foo[,superposedsource :=  Max %in% shiftedmaxmax[superposed],by = Class]
df_foo[,superposedtot := ifelse((superposed | superposedsource) &,T,F)]

    Class Min Max shiftedmaxmax superposed superposedsource superposedtot
 1:     A 100 200            NA         NA            FALSE            NA
 2:     A 200 210           200      FALSE            FALSE         FALSE
 3:     A 210 310           210      FALSE            FALSE         FALSE
 4:     A 500 630           310      FALSE             TRUE          TRUE
 5:     A 510 530           630       TRUE            FALSE          TRUE
 6:     A 705 800           630      FALSE            FALSE         FALSE
 7:     B 100 200            NA         NA            FALSE            NA
 8:     B 200 210           200      FALSE            FALSE         FALSE
 9:     B 210 310           210      FALSE            FALSE         FALSE
10:     B 500 630           310      FALSE             TRUE          TRUE
11:     B 510 530           630       TRUE            FALSE          TRUE
12:     B 705 800           630      FALSE            FALSE         FALSE
0 голосов
/ 21 февраля 2019

Другой подход data.table.
Порядок выборки данных / диапазонов не имеет значения в этом ответе ... foverlaps() делает всю тяжелую работу за вас.

sampleданные

library( data.table )
dt <- as.data.table( df_foo )

код

#set key for the data.table
setkey(dt, Min, Max)
#perform overlap join, keep only joined ranges where the class is the same, and Min and Max are not the same.
result <- foverlaps( dt, dt )[ Class == i.Class & !(Min == i.Min | Max == i.Max | Min == i.Max | Max == i.Min), ]
#create a logical vector (i.e. Overlap) by checking if the (pasted) combination of
#Class, Min and Max exists in both 'dt' and 'result'
dt[ , Overlap := paste0( Class, Min, Max ) %in% paste0( result$Class, result$Min, result$Max) ][]

#     Class Min Max Overlap
#  1:     A 100 200   FALSE
#  2:     B 100 200   FALSE
#  3:     A 200 210   FALSE
#  4:     B 200 210   FALSE
#  5:     A 210 310   FALSE
#  6:     B 210 310   FALSE
#  7:     A 500 630    TRUE
#  8:     B 500 630    TRUE
#  9:     A 510 530    TRUE
# 10:     B 510 530    TRUE
# 11:     A 705 800   FALSE
# 12:     B 705 800   FALSE
0 голосов
/ 21 февраля 2019

с dplyr

df=df_foo%>%group_by(Class)%>%
  mutate(Overlap=if_else(Min<lag(Max,order_by=Class),TRUE,FALSE))
df$Overlap[which(df$Overlap==TRUE)-1]=TRUE
df$Overlap[which(is.na(df$Overlap))]=FALSE

> df
# A tibble: 12 x 4
# Groups:   Class [2]
   Class   Min   Max Overlap
   <fct> <dbl> <dbl> <lgl>  
 1 A       100   200 FALSE  
 2 A       200   210 FALSE  
 3 A       210   310 FALSE  
 4 A       500   630 TRUE   
 5 A       510   530 TRUE   
 6 A       705   800 FALSE  
 7 B       100   200 FALSE  
 8 B       200   210 FALSE  
 9 B       210   310 FALSE  
10 B       500   630 TRUE   
11 B       510   530 TRUE   
12 B       705   800 FALSE 

Этот код предполагает, что ваши значения находятся в порядке возрастания, поскольку он проверяет только предыдущую строку.

edit
Не самый красивый, но работает.

df_foo$Class=as.character.factor(df_foo$Class)
df_foo=as.data.frame(df_foo)
df_foo$Overlap=rep("FALSE",nrow(df_foo))
for (i in 1:nrow(df_foo)){
  aux=FALSE
  class=df_foo$Class[i]
  df=df_foo[-i,]%>%filter(.,Class==class)
  for (j in 1:nrow(df)){
    if (df_foo[i,"Min"]<df[j,"Max"] & df_foo[i,"Max"] > df[j,"Min"]){
      aux=TRUE
    }
  }
  df_foo[i,"Overlap"]=aux
}


> df_foo
   Class Min Max Overlap
1      A 500 630    TRUE
2      A 100 200   FALSE
3      B 100 200   FALSE
4      A 210 310   FALSE
5      A 200 210   FALSE
6      B 210 310   FALSE
7      A 510 530    TRUE
8      B 200 210   FALSE
9      A 705 800   FALSE
10     B 500 630    TRUE
11     B 510 530    TRUE
12     B 705 800   FALSE

Должен быть способ сделать это с dplyr, но я не мог понять это,Что происходит, так это то, что он проходит через каждый ряд df_foo;он генерирует dataframe со всеми другими строками той же группы и сравнивает, есть ли совпадения (min<max и max<min)

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...