Вот как это можно сделать с помощью tf.scatter_nd
:
import tensorflow as tf
import numpy as np
bbox = np.arange(3 * 4).reshape(3, 4)
x = np.array([0, 0, 1])
y = np.array([1, 1, 1])
x_size = 2
y_size = 2
# TensorFlow calculation
with tf.Graph().as_default(), tf.Session() as sess:
bbox_t = tf.convert_to_tensor(bbox)
x_t = tf.convert_to_tensor(x)
y_t = tf.convert_to_tensor(y)
shape = tf.shape(bbox_t)
rows, cols = shape[0], shape[1]
ii, jj = tf.meshgrid(tf.range(rows), tf.range(cols), indexing='ij')
xx = tf.tile(tf.expand_dims(x_t, 1), (1, cols))
yy = tf.tile(tf.expand_dims(y_t, 1), (1, cols))
idx = tf.stack([ii, jj, xx, yy], axis=-1)
output = tf.scatter_nd(idx, bbox_t, [rows, cols, x_size, y_size])
output_tf = sess.run(output)
# Test with NumPy calculation
output_np = np.zeros((3, 4, 2, 2))
output_np[np.arange(3), :, x, y] = bbox
print(np.all(output_tf == output_np))
# True