Я написал код распознавания изображений для одного из моих классов.Я классифицирую «хорошие» и «плохие» ультразвуковые изображения сердца.У меня проблема в том, что классификатор всегда предсказывает, что изображение «хорошее».В данный момент у меня не так много изображений для сортировки, поэтому точность составляет всего около 50%, однако я не уверен, почему аппарат всегда считает, что изображение хорошее.
Примеры изображений:
Вот плохое изображение
Вот хорошее изображение
Есть советы?Я предоставил код ниже:
#required imports
#using sequential from tensorflow
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
#classification model to be sequential
classifier = Sequential()
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
classifier.add(Flatten())
classifier.add(Dense(units = 128, activation = 'relu'))
#output layer
classifier.add(Dense(units = 1, activation = 'sigmoid'))
#compilation
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
#training
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2,
zoom_range = 0.2, horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory("/home/jovyan/dataset/training_set/", target_size = (64, 64), batch_size = 32, class_mode = 'binary')
test_set = test_datagen.flow_from_directory("/home/jovyan/dataset/test_set/", target_size = (64, 64), batch_size = 32, class_mode = 'binary')
classifier.fit_generator(training_set, steps_per_epoch = 85, epochs = 25, validation_data=test_set, validation_steps=2000)
#predictions
import numpy as np
from keras.preprocessing import image
test_image=image.load_img("/home/jovyan/dataset/test_set/test_bad_1.jpg", target_size=(64, 64))
test_image=image.img_to_array(test_image)
test_image=np.expand_dims(test_image, axis=0)
result=classifier.predict(test_image)
training_set.class_indices
if result[0][0]==1:
prediction='good'
else:
prediction='bad'
print(prediction)`