У меня есть структура CNN с двумя выходами.Я обучил эту сеть, но во время теста я хочу разделить эту сеть на две части, которые выдают результаты, и протестировать ее.но я не знаю, как я могу загрузить матрицы веса обучения, которые были изучены для всей сети, в каждую часть сети.не могли бы вы сказать мне, как я могу сохранить веса для каждой части для этой цели?основываясь на моем коде, у меня есть model=Model(inputs=[image,wtm],outputs=decoded)
и watermark_extraction=Model(inputs=[image,wtm],outputs=[decoded,pred_w])
, которые декодировали и pred_w - мои два выхода.во время теста мне нравится иметь две сети, которые построены из основной сети, и каждая из них производит упомянутый вывод.но я не знаю, как я могу разделить эту сеть и как я подаю весовые матрицы в эти сети?
from keras.layers import Input, Concatenate, GaussianNoise,Dropout,BatchNormalization
from keras.layers import Conv2D, AtrousConv2D
from keras.models import Model
from keras.datasets import mnist
from keras.callbacks import TensorBoard
from keras import backend as K
from keras import layers
import matplotlib.pyplot as plt
import tensorflow as tf
import keras as Kr
from keras.optimizers import SGD,RMSprop,Adam
from keras.callbacks import ReduceLROnPlateau
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
import numpy as np
import pylab as pl
import matplotlib.cm as cm
import keract
from matplotlib import pyplot
from keras import optimizers
from keras import regularizers
from tensorflow.python.keras.layers import Lambda;
#-----------------building w train---------------------------------------------
w_expand=np.zeros((49999,28,28),dtype='float32')
wv_expand=np.zeros((9999,28,28),dtype='float32')
wt_random=np.random.randint(2, size=(49999,4,4))
wt_random=wt_random.astype(np.float32)
wv_random=np.random.randint(2, size=(9999,4,4))
wv_random=wv_random.astype(np.float32)
w_expand[:,:4,:4]=wt_random
wv_expand[:,:4,:4]=wv_random
x,y,z=w_expand.shape
w_expand=w_expand.reshape((x,y,z,1))
x,y,z=wv_expand.shape
wv_expand=wv_expand.reshape((x,y,z,1))
#-----------------building w test---------------------------------------------
w_test = np.random.randint(2,size=(1,4,4))
w_test=w_test.astype(np.float32)
wt_expand=np.zeros((1,28,28),dtype='float32')
wt_expand[:,0:4,0:4]=w_test
wt_expand=wt_expand.reshape((1,28,28,1))
#-----------------------encoder------------------------------------------------
#------------------------------------------------------------------------------
wtm=Input((28,28,1))
image = Input((28, 28, 1))
conv1 = Conv2D(64, (5, 5), activation='relu', padding='same', name='convl1e')(image)
conv2 = Conv2D(64, (5, 5), activation='relu', padding='same', name='convl2e')(conv1)
conv3 = Conv2D(64, (5, 5), activation='relu', padding='same', name='convl3e')(conv2)
#conv3 = Conv2D(8, (3, 3), activation='relu', padding='same', name='convl3e', kernel_initializer='Orthogonal',bias_initializer='glorot_uniform')(conv2)
BN=BatchNormalization()(conv3)
#DrO1=Dropout(0.25,name='Dro1')(BN)
encoded = Conv2D(1, (5, 5), activation='relu', padding='same',name='encoded_I')(BN)
#-----------------------adding w---------------------------------------
#add_const = Kr.layers.Lambda(lambda x: x + Kr.backend.constant(w_expand))
#encoded_merged=keras.layers.Add()([encoded,wtm])
#add_const = Kr.layers.Lambda(lambda x: x + wtm)
#encoded_merged = add_const(encoded)
#encoder=Model(inputs=image, outputs= encoded_merged)
#encoded_merged = Concatenate(axis=3)([encoded, wtm])
add_const = Kr.layers.Lambda(lambda x: x[0] + x[1])
encoded_merged = add_const([encoded,wtm])
#encoder=Model(inputs=[image,wtm], outputs= encoded_merged ,name='encoder')
#encoder.summary()
#-----------------------decoder------------------------------------------------
#------------------------------------------------------------------------------
#deconv_input=Input((28,28,1),name='inputTodeconv')
#encoded_merged = Input((28, 28, 2))
deconv1 = Conv2D(64, (5, 5), activation='relu', padding='same', name='convl1d')(encoded_merged)
deconv2 = Conv2D(64, (5, 5), activation='relu', padding='same', name='convl2d')(deconv1)
deconv3 = Conv2D(64, (5, 5), activation='relu',padding='same', name='convl3d')(deconv2)
deconv4 = Conv2D(64, (5, 5), activation='relu',padding='same', name='convl4d')(deconv3)
BNd=BatchNormalization()(deconv3)
#DrO2=Dropout(0.25,name='DrO2')(BNd)
decoded = Conv2D(1, (5, 5), activation='sigmoid', padding='same', name='decoder_output')(BNd)
model=Model(inputs=[image,wtm],outputs=decoded)
decoded_noise = GaussianNoise(0.5)(decoded)
#----------------------w extraction------------------------------------
convw1 = Conv2D(16, (3,3), activation='relu', padding='same', name='conl1w')(decoded_noise)
convw2 = Conv2D(16, (3, 3), activation='relu', padding='same', name='convl2w')(convw1)
convw3 = Conv2D(16, (3, 3), activation='relu', padding='same', name='conl3w')(convw2)
convw4 = Conv2D(8, (3, 3), activation='relu', padding='same', name='conl4w')(convw3)
convw5 = Conv2D(8, (3, 3), activation='relu', padding='same', name='conl5w')(convw4)
convw6 = Conv2D(4, (3, 3), activation='relu', padding='same', name='conl6w')(convw5)
#BNed=BatchNormalization()(convw6)
#DrO3=Dropout(0.25, name='DrO3')(BNed)
pred_w = Conv2D(1, (1, 1), activation='sigmoid', padding='same', name='reconstructed_W')(convw6)
# reconsider activation (is W positive?)
# should be filter=1 to match W
watermark_extraction=Model(inputs=[image,wtm],outputs=[decoded,pred_w])
watermark_extraction.summary()
#----------------------training the model--------------------------------------
#------------------------------------------------------------------------------
#----------------------Data preparation----------------------------------------
(x_train, _), (x_test, _) = mnist.load_data()
x_validation=x_train[1:10000,:,:]
x_train=x_train[10001:60000,:,:]
#
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_validation = x_validation.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) # adapt this if using `channels_first` image data format
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1)) # adapt this if using `channels_first` image data format
x_validation = np.reshape(x_validation, (len(x_validation), 28, 28, 1))
#---------------------compile and train the model------------------------------
#opt=SGD(momentum=0.99)
watermark_extraction.compile(optimizer='adam', loss={'decoder_output':'mse','reconstructed_W':'binary_crossentropy'}, loss_weights={'decoder_output': 0.1, 'reconstructed_W': 1.0},metrics=['mae'])
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=20)
#rlrp = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=20, min_delta=1E-4, verbose=1)
mc = ModelCheckpoint('best_model_5x5F_dp_gn_add_adam.h5', monitor='val_loss', mode='min', verbose=1, save_best_only=True)
history=watermark_extraction.fit([x_train,w_expand], [x_train,w_expand],
epochs=200,
batch_size=32,
validation_data=([x_validation,wv_expand], [x_validation,wv_expand]),
callbacks=[TensorBoard(log_dir='E:/concatnatenetwork', histogram_freq=0, write_graph=False),es,mc])
watermark_extraction.summary()
WEIGHTS_FNAME = 'v1_adam_model_5x5F_add_dp_gn.hdf'
watermark_extraction.save_weights(WEIGHTS_FNAME, overwrite=True)