У меня есть Dataframe, который я хотел бы замаскировать (преобразовать в NaN) с логическими значениями многоиндексированных рядов, где многоиндексный ряд также являются именами столбцов в Dataframe.Например, если df
равно:
df = pd.DataFrame({ 'A': (188, 750, 1330, 1385, 188, 750, 810, 1330, 1385),
'B': (1, 2, 4, 5, 1, 2, 3, 4, 5),
'C': (2, 5, 7, 2, 5, 5, 3, 7, 2),
'D': ('foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'bar') })
A B C D
0 188 1 2 foo
1 750 2 5 foo
2 1330 4 7 foo
3 1385 5 2 foo
4 188 1 5 bar
5 750 2 5 bar
6 810 3 3 bar
7 1330 4 7 bar
8 1385 5 2 bar
и многоиндексированная серия ser
равна:
arrays = [('188', '750', '810', '1330', '1385'),
('1', '2', '3', '4', '5')]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['A', 'B'])
ser = pd.Series([False, False, True, False, True], index=index)
A B
188 1 False
750 2 False
810 3 True
1330 4 False
1385 5 True
dtype: bool
, как я могу замаскировать (преобразовать в NaN) значение настолбец C
в df
, где записи являются False
в Серии ser
, чтобы закончить окончательным кадром данных, который будет выглядеть следующим образом:
A B C D
0 188 1 2 foo
1 750 2 5 foo
2 1330 4 7 foo
3 1385 5 NaN foo
4 188 1 5 bar
5 750 2 5 bar
6 810 3 NaN bar
7 1330 4 7 bar
8 1385 5 NaN bar