Я анализирую данные (включены ниже) с использованием функции lme4
glmer
в R. Модель, которую я строю, состоит из распределенной по Пуассону переменной отклика (obs
), одного случайного фактора (area
), одно непрерывное смещение (duration
), пять непрерывных фиксированных эффектов (can_perc
, can_n
, time
, temp
, cloud_cover
) и один биномиальный фиксированный коэффициент эффекта (burnt
).Перед подгонкой модели я проверил коллинеарность и удалил все коллинеарные переменные.
Исходная модель:
q1 = glmer(obs ~ can_perc + can_n + time * temp +
cloud_cover + factor(burnt) + (1|area) + offset(dat$duration),
data=dat, family=poisson, na.action = na.fail)
(Примечание: мне нужно указать na.action
как 'na.fail'как я хочу dredge()
модель позже, и это требуется для этого.)
Запуск модели выдает следующее предупреждение:
"Гессиан численно сингулярен: параметрыопределяется не однозначно "
В аналогичных вариациях модели я также получил предупреждение:
" In checkConv (attr (opt, "производные"), opt$ par, ctrl = control $ checkConv,: Модель почти неопознаваема: большое отношение собственных значений - Масштабировать переменные? "
Из моего ограниченного понимания совета здесь https://rdrr.io/cran/lme4/man/troubleshooting.html и в других местах, обаиз этих предупреждений отражают аналогичную проблему: гессиан (матрица обратной кривизны) имеет большое собственное значение, что указывает на то, что (в пределах числовых допусков) поверхность в некотором направлении совершенно плоская.предупреждения и ссылку, я перемасштабировал все непрерывные переменные предиктора, используя scale()
.Я также масштабировал переменную смещения (я пробовал как с масштабированием, так и без него).Модель с масштабированными переменными предиктора здесь:
q2 = glmer(obs ~ s.can_perc + s.can_n + s.time * s.temp +
s.cloud_cover + factor(burnt) + (1|area) +
offset(dat$s.duration),
data=dat, family=poisson, na.action = na.fail)
Однако я еще не избежал собственных значений!Масштабированная модель выдает два предупреждения:
"невозможно оценить масштабированный градиент"
"Модель не может сходиться: вырожденный гессиан с 1 отрицательным собственным значением"
У меня естьМного разыскивал в Интернете и не смог найти другой случай / решение того, как справиться с проблемами собственных значений после масштабирования предикторов, кроме проверки того, что модель не была ошибочно определена.
Попытки устранить предупреждения /улучшить оптимизацию:
На основании этих страниц / документов: https://cran.r -project.org / web / packages / lme4 / lme4.pdf
https://stats.stackexchange.com/questions/164457/r-glmer-warnings-model-fails-to-converge-model-is-nearly-unidentifiable
https://rdrr.io/cran/lme4/man/isSingular.html
https://stats.stackexchange.com/questions/242109/model-failed-to-converge-warning-in-lmer
и другие,
У меня есть:
провереноспецификации модели и данные об ошибках (ничего, что я могу видеть - я что-то пропустил?)
проверено на сингулярность с помощью is_singular(x, tol = 1e-05)
(каким-то образом этот вызов функции эволюционировал с isSingular()
дотекущая форма?): все модели дают ЛОЖЬ.
проверенная сходимость, мeasure с converge_ok(q2, tolerance = 0.001)
: все модели дают FALSE, если я существенно не увеличил допуск;однако они существенно различаются по степени сходимости.
пробовали различные оптимизаторы / методы оценки модели следующим образом:
- a)
glmerControl(optimizer = "bobyqa") and glmerControl(optimizer ="Nelder_Mead")
- b)
glmerControl(optimizer ='optimx', optCtrl=list(method='nlminb'))
- c) bobyqa, Nelder_Mead, optimx.nlminb, optimx.L-BFGS-B, nloptwrap.NLOPT_LN_NELDERMEAD, nloptwrap.NLOPT_LN_BOBYQA и функция 1095 * с использованием функции N95пакет optimx.
Вот код:
# singularity and convergence for first two models:
is_singular(s1, tol = 1e-05) # FALSE (a good thing?)
converge_ok(s1, tol = 1e-05) # FALSE (a bad thing?) 0.0259109730912352
is_singular(s2, tol = 1e-05) # FALSE (a good thing?)
converge_ok(s2, tol = 1e-05) # FALSE (a bad thing?) 0.0023434329028163
# I looked at singularity and converge measures for the others below, but omitted for brevity.
# Alternate optimisations for q1:
q1.bobyqa = glmer(obs ~ can_perc + can_n + time * temp + cloud_cover + factor(burnt) + (1|area) + offset(dat$duration), data=dat, family=poisson, na.action = na.fail, glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e5)))
# Warning 1: unable to evaluate scaled gradient
# Warning 2: Model failed to converge: degenerate Hessian with 1 negative eigenvalues
q1.neldermead = glmer(obs ~ can_perc + can_n + time * temp + cloud_cover + factor(burnt) + (1|area) + offset(dat$duration), data=dat, family=poisson, na.action = na.fail, glmerControl(optimizer ="Nelder_Mead", optCtrl = list(maxfun = 2e5)))
# Warning: unable to evaluate scaled gradient Hessian is numerically singular: parameters are not uniquely determined
q1.nlminb = glmer(obs ~ can_perc + can_n + time * temp + cloud_cover + factor(burnt) + (1|area) + offset(dat$duration), data=dat, family=poisson, na.action = na.fail, glmerControl(optimizer ='optimx', optCtrl=list(method='nlminb')))
# Warning: Parameters or bounds appear to have different scalings. This can cause poor performance in optimization.
# It is important for derivative free methods like BOBYQA, UOBYQA, NEWUOA.convergence code 9999 from optimxError in pwrssUpdate(pp, resp, tol = tolPwrss, GQmat = GQmat, compDev = compDev, : (maxstephalfit) PIRLS step-halvings failed to reduce deviance in pwrssUpdate
all_fit(q1)
# Alternate optimisations for q2:
q2.bobyqa = glmer(obs ~ s.can_perc + s.can_n + s.time * s.temp + s.cloud_cover + factor(burnt) + (1|area) + offset(dat$s.duration), data=dat, family=poisson, na.action = na.fail, glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e5)))
# Warning 1: unable to evaluate scaled gradient
# Warning 2: Model failed to converge: degenerate Hessian with 1 negative eigenvalues
q2.neldermead = glmer(obs ~ s.can_perc + s.can_n + s.time * s.temp + s.cloud_cover + factor(burnt) + (1|area) + offset(dat$s.duration), data=dat, family=poisson, na.action = na.fail, glmerControl(optimizer ="Nelder_Mead", optCtrl = list(maxfun = 2e5)))
# Warning: unable to evaluate scaled gradient Hessian is numerically singular: parameters are not uniquely determined
q2.nlminb = glmer(obs ~ s.can_perc + s.can_n + s.time * s.temp + s.cloud_cover + factor(burnt) + (1|area) + offset(dat$s.duration), data=dat, family=poisson, na.action = na.fail, control = glmerControl(optimizer ='optimx', optCtrl=list(method='nlminb')))
# Warning: Model is nearly unidentifiable: large eigenvalue ratio - Rescale variables?
all_fit(q2)
Выход из вышеприведенного кода для немасштабированной модели (q1):
is_singular(s1, tol = 1e-05) # FALSE (a good thing?)
[1] FALSE
converge_ok(s1, tol = 1e-05) # FALSE (a bad thing?) 0.0259109730912352
0.0259109730912352
FALSE
is_singular(s2, tol = 1e-05) # FALSE (a good thing?)
[1] FALSE
alternate optimisations for original model:
q1.bobyqa = glmer(obs ~ can_perc + can_n + time * temp + cloud_cover + factor(burnt) + (1|area) + offset(dat$duration), data=dat, family=poisson, na.action = na.fail, glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e5)))
unable to evaluate scaled gradientModel failed to converge: degenerate Hessian with 1 negative eigenvalues
alternate optimisations for original model:
q1.bobyqa = glmer(obs ~ can_perc + can_n + time * temp + cloud_cover + factor(burnt) + (1|area) + offset(dat$duration), data=dat, family=poisson, na.action = na.fail, glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e5)))
unable to evaluate scaled gradientModel failed to converge: degenerate Hessian with 1 negative eigenvalues
q1.neldermead = glmer(obs ~ can_perc + can_n + time * temp + cloud_cover + factor(burnt) + (1|area) + offset(dat$duration), data=dat, family=poisson, na.action = na.fail, glmerControl(optimizer ="Nelder_Mead", optCtrl = list(maxfun = 2e5)))
unable to evaluate scaled gradient Hessian is numerically singular: parameters are not uniquely determined
all_fit(q1)
bobyqa. : unable to evaluate scaled gradientModel failed to converge: degenerate Hessian with 1 negative eigenvalues[OK]
Nelder_Mead. : unable to evaluate scaled gradient Hessian is numerically singular: parameters are not uniquely determined[OK]
optimx.nlminb : Parameters or bounds appear to have different scalings.
This can cause poor performance in optimization.
It is important for derivative free methods like BOBYQA, UOBYQA, NEWUOA.convergence code 9999 from optimxParameters or bounds appear to have different scalings.
This can cause poor performance in optimization.
It is important for derivative free methods like BOBYQA, UOBYQA, NEWUOA.convergence code 9999 from optimx[ERROR]
optimx.L-BFGS-B : Parameters or bounds appear to have different scalings.
This can cause poor performance in optimization.
It is important for derivative free methods like BOBYQA, UOBYQA, NEWUOA.convergence code 9999 from optimxParameters or bounds appear to have different scalings.
This can cause poor performance in optimization.
It is important for derivative free methods like BOBYQA, UOBYQA, NEWUOA.convergence code 9999 from optimx[ERROR]
nloptwrap.NLOPT_LN_NELDERMEAD : [ERROR]
nloptwrap.NLOPT_LN_BOBYQA : [ERROR]
nmkbw. : [ERROR]
$`bobyqa.`
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: poisson ( log )
Formula: obs ~ can_perc + can_n + time * temp + cloud_cover + factor(burnt) + (1 | area) + offset(dat$duration)
Data: dat
AIC BIC logLik deviance df.resid
311.0473 330.3356 -146.5237 293.0473 54
Random effects:
Groups Name Std.Dev.
area (Intercept) 1.992
Number of obs: 63, groups: area, 8
Fixed Effects:
(Intercept) can_perc can_n time temp
-67.4998 -1.3180 0.0239 4.8025 1.7793
cloud_cover factor(burnt)unburnt time:temp
-0.3813 18.5676 -0.1748
convergence code 0; 2 optimizer warnings; 0 lme4 warnings
$Nelder_Mead.
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: poisson ( log )
Formula: obs ~ can_perc + can_n + time * temp + cloud_cover + factor(burnt) + (1 | area) + offset(dat$duration)
Data: dat
AIC BIC logLik deviance df.resid
311.0473 330.3356 -146.5237 293.0473 54
Random effects:
Groups Name Std.Dev.
area (Intercept) 1.992
Number of obs: 63, groups: area, 8
Fixed Effects:
(Intercept)
can_perc can_n time temp
-67.48057 -1.31791 0.02389 4.80463 1.78012
cloud_cover factor(burnt)unburnt time:temp
-0.38118 18.52637 -0.17483
convergence code 0; 2 optimizer warnings; 0 lme4 warnings
$optimx.nlminb
<std::runtime_error in pwrssUpdate(pp, resp, tol = tolPwrss, GQmat = GQmat, compDev = compDev, grpFac = fac, maxit = maxit, verbose = verbose): (maxstephalfit) PIRLS step-halvings failed to reduce deviance in pwrssUpdate>
$`optimx.L-BFGS-B`
<std::runtime_error in pwrssUpdate(pp, resp, tol = tolPwrss, GQmat = GQmat, compDev = compDev, grpFac = fac, maxit = maxit, verbose = verbose): (maxstephalfit) PIRLS step-halvings failed to reduce deviance in pwrssUpdate>
$nloptwrap.NLOPT_LN_NELDERMEAD
<simpleError in pwrssUpdate(pp, resp, tol = tolPwrss, GQmat = GQmat, compDev = compDev, grpFac = fac, maxit = maxit, verbose = verbose): Downdated VtV is not positive definite>
$nloptwrap.NLOPT_LN_BOBYQA
<simpleError in pwrssUpdate(pp, resp, tol = tolPwrss, GQmat = GQmat, compDev = compDev, grpFac = fac, maxit = maxit, verbose = verbose): Downdated VtV is not positive definite>
$nmkbw.
<std::runtime_error in pwrssUpdate(pp, resp, tol = tolPwrss, GQmat = GQmat, compDev = compDev, grpFac = fac, maxit = maxit, verbose = verbose): (maxstephalfit) PIRLS step-halvings failed to reduce deviance in pwrssUpdate>
Выход из вышеприведенного кода для масштабированной модели (q2):
alternate optimisations for q2:
q2.bobyqa = glmer(obs ~ s.can_perc + s.can_n + s.time * s.temp + s.cloud_cover + factor(burnt) + (1|area) + offset(dat$s.duration), data=dat, family=poisson, na.action = na.fail, glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e5)))
Model is nearly unidentifiable: large eigenvalue ratio - Rescale variables?
q2.neldermead = glmer(obs ~ s.can_perc + s.can_n + s.time * s.temp + s.cloud_cover + factor(burnt) + (1|area) + offset(dat$s.duration), data=dat, family=poisson, na.action = na.fail, glmerControl(optimizer ="Nelder_Mead", optCtrl = list(maxfun = 2e5)))
unable to evaluate scaled gradientModel failed to converge: degenerate Hessian with 1 negative eigenvalues
all_fit(q2)
bobyqa. : Model is nearly unidentifiable: large eigenvalue ratio
- Rescale variables?[OK]
Nelder_Mead. : unable to evaluate scaled gradientModel failed to converge: degenerate Hessian with 1 negative eigenvalues[OK]
optimx.nlminb : Model is nearly unidentifiable: large eigenvalue ratio
- Rescale variables?[OK]
optimx.L-BFGS-B : unable to evaluate scaled gradientModel failed to converge: degenerate Hessian with 1 negative eigenvalues[OK]
nloptwrap.NLOPT_LN_NELDERMEAD : [ERROR]
nloptwrap.NLOPT_LN_BOBYQA : [ERROR]
nmkbw. : [ERROR]
$`bobyqa.`
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: poisson ( log )
Formula: n_shreiberi ~ s.can_perc + s.can_n + s.time * s.temp + s.cloud_cover +
factor(burnt) + (1 | area) + offset(dat$s.duration)
Data: dat
AIC BIC logLik deviance df.resid
316.8412 336.1294 -149.4206 298.8412 54
Random effects:
Groups Name Std.Dev.
area (Intercept) 2.523
Number of obs: 63, groups: area, 8
Fixed Effects:
(Intercept) s.can_perc s.can_n s.time s.temp
-18.19816 -0.22152 0.45839 0.05239 -0.24983
s.cloud_cover factor(burnt)unburnt s.time:s.temp
-0.19691 17.92390 -0.13948
convergence code 0; 1 optimizer warnings; 0 lme4 warnings
$Nelder_Mead.
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: poisson ( log )
Formula: n_shreiberi ~ s.can_perc + s.can_n + s.time * s.temp + s.cloud_cover +
factor(burnt) + (1 | area) + offset(dat$s.duration)
Data: dat
AIC BIC logLik deviance df.resid
316.8408 336.1290 -149.4204 298.8408 54
Random effects:
Groups Name Std.Dev.
area (Intercept) 2.524
Number of obs: 63, groups: area, 8
Fixed Effects:
(Intercept) s.can_perc s.can_n s.time s.temp
-19.29632 -0.22153 0.45840 0.05241 -0.24990
s.cloud_cover factor(burnt)unburnt s.time:s.temp
-0.19692 19.02091 -0.13949
convergence code 0; 2 optimizer warnings; 0 lme4 warnings
$optimx.nlminb
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: poisson ( log )
Formula: n_shreiberi ~ s.can_perc + s.can_n + s.time * s.temp + s.cloud_cover +
factor(burnt) + (1 | area) + offset(dat$s.duration)
Data: dat
AIC BIC logLik deviance df.resid
316.8412 336.1294 -149.4206 298.8412 54
Random effects:
Groups Name Std.Dev.
area (Intercept) 2.523
Number of obs: 63, groups: area, 8
Fixed Effects:
(Intercept) s.can_perc s.can_n s.time s.temp
-18.23626 -0.22152 0.45839 0.05239 -0.24983
s.cloud_cover factor(burnt)unburnt s.time:s.temp
-0.19691 17.96199 -0.13948
convergence code 0; 1 optimizer warnings; 0 lme4 warnings
$`optimx.L-BFGS-B`
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: poisson ( log )
Formula: n_shreiberi ~ s.can_perc + s.can_n + s.time * s.temp + s.cloud_cover +
factor(burnt) + (1 | area) + offset(dat$s.duration)
Data: dat
AIC BIC logLik deviance df.resid
316.8412 336.1294 -149.4206 298.8412 54
Random effects:
Groups Name Std.Dev.
area (Intercept) 2.524
Number of obs: 63, groups: area, 8
Fixed Effects:
(Intercept) s.can_perc s.can_n s.time s.temp
-18.23581 -0.22155 0.45841 0.05242 -0.24997
s.cloud_cover factor(burnt)unburnt s.time:s.temp
-0.19694 17.96246 -0.13943
convergence code 0; 2 optimizer warnings; 0 lme4 warnings
$nloptwrap.NLOPT_LN_NELDERMEAD
<simpleError in pwrssUpdate(pp, resp, tol = tolPwrss, GQmat = GQmat, compDev = compDev, grpFac = fac, maxit = maxit, verbose = verbose): Downdated VtV is not positive definite>
$nloptwrap.NLOPT_LN_BOBYQA
<simpleError in pwrssUpdate(pp, resp, tol = tolPwrss, GQmat = GQmat, compDev = compDev, grpFac = fac, maxit = maxit, verbose = verbose): Downdated VtV is not positive definite>
$nmkbw.
<simpleError in pwrssUpdate(pp, resp, tol = tolPwrss, GQmat = GQmat, compDev = compDev, grpFac = fac, maxit = maxit, verbose = verbose): Downdated VtV is not positive definite>
Данные:
Набор данных доступен по этой ссылке: https://www.dropbox.com/s/ud50uatztjq4bh9/20181217%20Surveys%20simplified%20data%20for%20stackX.xlsx?dl=0
Заключение и запрос:
Мне кажется, что ни один из этих альтернативных методов оптимизации также не удался;на самом деле, некоторые из них, похоже, вызвали другие предупреждения / ошибки, которые унесли бы меня в другую кроличью нору.
Может кто-нибудь посоветовать, как я могу продвинуться в подборе этих моделей?У меня нет намерения, чтобы они были конечными моделями, а скорее дноуглубить их, а затем выбрать оптимальные / лучшие модели из различных альтернативных моделей подмножеств.