Один простой способ - создать один элемент data.frame methyl_cov_df
, а затем использовать формулу.
Ниже приведен пример t.test для первых 6 выборок probe1
значения на sex
(соответственно измените количество требуемых выборок):
# combined data frame
methyl_cov_df <- cbind(t(methylation[,1:6]),covariates)
meth_cov_df:
probe1 probe2 probe3 probe4 patient sex ethnicity
sample1 0.1111 0.1111 0.1111 0.1111 p1 0 caucasian
sample2 0.2222 0.2222 0.2222 0.2222 p2 1 caucasian
sample3 0.3333 0.3333 0.3333 0.3333 p3 1 caucasian
sample4 0.4444 0.4444 0.4444 0.4444 p4 0 caucasian
sample5 0.5555 0.5555 0.5555 0.5555 p5 0 caucasian
sample6 0.6666 0.6666 0.6666 0.6666 p6 1 caucasian
# t.test by formula: slice the data.frame to use the number of samples: done for 6 below
t.test(formula = probe1~sex, data= methyl_cov_df[1:6,])
t-критерий Уэлча Два
data: probe1 by sex
t = -0.19612, df = 4, p-value = 0.8541
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.5613197 0.4872530
sample estimates:
mean in group 0 mean in group 1
0.3703333 0.4073667
Данные:
covariates <- read.table(text = ' "patient" "sex" "ethnicity"
sample1 p1 0 caucasian
sample2 p2 1 caucasian
sample3 p3 1 caucasian
sample4 p4 0 caucasian
sample5 p5 0 caucasian
sample6 p6 1 caucasian', header = T)
methylation <- read.table(text = " sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9 sample10
probe1 0.1111 0.2222 0.3333 0.4444 0.5555 0.6666 0.7777 0.8888 0.9999 1.111
probe2 0.1111 0.2222 0.3333 0.4444 0.5555 0.6666 0.7777 0.8888 0.9999 1.111
probe3 0.1111 0.2222 0.3333 0.4444 0.5555 0.6666 0.7777 0.8888 0.9999 1.111
probe4 0.1111 0.2222 0.3333 0.4444 0.5555 0.6666 0.7777 0.8888 0.9999 1.111", header = T)