В настоящее время я пытаюсь реализовать многослойный автоэнкодер с использованием Keras, работающий с набором данных Mnist (рукописные цифры).Мой код выглядит следующим образом:
from keras.layers import Input, Dense, initializers
from keras.models import Model
import numpy as np
from Dataset import Dataset
import matplotlib.pyplot as plt
from keras import optimizers, losses
from keras import backend as K
import tensorflow as tf
from keras.callbacks import TensorBoard
from keras.layers import Dropout
from keras.models import Sequential
from keras import models
from keras import layers
import keras
from keras.optimizers import Adam
#global variables
d = Dataset()
num_features = d.X_train.shape[1]
low_dim = 32
def autoencoder(epochs):
w = initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None)
model = Sequential()
#First autoencoder
model.add(Dense(400, activation='relu', kernel_initializer=w, input_dim=num_features, name='hidden'))
model.add(Dropout(0.2))
model.add(Dense(num_features, activation='sigmoid', input_dim = 400, name = 'output'))
#Second autoencoder
model.add(Dense(100, activation='relu', kernel_initializer=w, input_dim=num_features, name='hidden2'))
model.add(Dropout(0.2))
model.add(Dense(num_features, activation = 'sigmoid', input_dim = 100, name='output2'))
#Third autoencoder
model.add(Dense(50, activation='relu', kernel_initializer=w, input_dim=num_features, name='hidden3'))
model.add(Dropout(0.2))
model.add(Dense(num_features, activation='sigmoid', input_dim=10, name='output3'))
model.compile(optimizer=Adam(lr=0.01), loss='binary_crossentropy', metrics=['accuracy'])
history = model.fit(d.X_train, d.X_train,
epochs=epochs,
batch_size=64,
shuffle=True,
validation_data=(d.X_test, d.X_test))
model.test_on_batch(d.X_test, d.X_test)
print(history.history.keys())
plt.plot(history.history['acc'])
print(history.history['acc'])
plt.show()
return model
def finding_index():
elements, index = np.unique(d.Y_test, return_index = True)
return elements, index
def plotting():
ae = autoencoder(2)
elements, index = finding_index()
y_proba = ae.predict(d.X_test)
plt.figure(figsize=(20, 4))
#size = 20
for i in range(len(index)):
ax = plt.subplot(2, len(index), i + 1)
plt.imshow(d.X_test[index[i]].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax = plt.subplot(2, len(index), i + 1 + len(index))
plt.imshow(y_proba[index[i]].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
plotting()
У меня есть два вопроса, должно ли это быть так, когда вы складываете автоэнкодеры, или я должен позволить одному слою уменьшить размеры, скажем, до 400, а затем до следующего100 и так далее, или как я это сделал?Второй - можете ли вы использовать разные оптимизаторы (в моем случае Адама) для разных слоев?Я хотел бы использовать SGD (стохастический градиентный спуск) для последнего слоя.Заранее спасибо!