Мои данные CSV следующие:
Столбцы:
- CRASH_MONTH (например, "1")
- CRASH_DAY (например, "1 ")
- TIMESTR (например," 8:40 ")
Желаемый результат:
Новый столбец с именем" CRASH_DATETIME "сdatetime
Объект Python, основанный на соответствующей дате.Год не имеет значения, основная цель - отслеживать аварии по месяцам, дням и часам: минутам, которые должны быть округлены до ближайших 30 минут.
Попробовал следующее, но не получилось:
from datetime import datetime, timedelta
def ceil_dt(month, day, hourWithMinutes, delta):
hour,minutes = hourWithMinutes.split(':')
int(month)
int(day)
int(hour)
int(minutes)
dt = datetime.datetime(month=month, day=day, hour=hour, minute=minutes)
return dt + (datetime.min - dt) % delta
и
dataInitial['TIME'] = dataInitial.apply(lambda row: ceil_dt(row['CRASH_MONTH'], row['CRASH_DAY'], row['TIMESTR'], '30'))
Но не удалось ( с использованием ноутбука Jupyter ):
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.Int64HashTable.get_item (pandas/_libs/hashtable.c:14010)()
TypeError: an integer is required
During handling of the above exception, another exception occurred:
KeyError Traceback (most recent call last)
<ipython-input-40-a9ef29fd7eb7> in <module>()
----> 1 dataInitial['TIME'] = dataInitial.apply(lambda row: ceil_dt(row['CRASH_MONTH'], row['CRASH_DAY'], row['TIMESTR'], '30'))
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/pandas/core/frame.py in apply(self, func, axis, broadcast, raw, reduce, args, **kwds)
4260 f, axis,
4261 reduce=reduce,
-> 4262 ignore_failures=ignore_failures)
4263 else:
4264 return self._apply_broadcast(f, axis)
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/pandas/core/frame.py in _apply_standard(self, func, axis, ignore_failures, reduce)
4356 try:
4357 for i, v in enumerate(series_gen):
-> 4358 results[i] = func(v)
4359 keys.append(v.name)
4360 except Exception as e:
<ipython-input-40-a9ef29fd7eb7> in <lambda>(row)
----> 1 dataInitial['TIME'] = dataInitial.apply(lambda row: ceil_dt(row['CRASH_MONTH'], row['CRASH_DAY'], row['TIMESTR'], '30'))
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/pandas/core/series.py in __getitem__(self, key)
599 key = com._apply_if_callable(key, self)
600 try:
--> 601 result = self.index.get_value(self, key)
602
603 if not is_scalar(result):
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/pandas/core/indexes/base.py in get_value(self, series, key)
2475 try:
2476 return self._engine.get_value(s, k,
-> 2477 tz=getattr(series.dtype, 'tz', None))
2478 except KeyError as e1:
2479 if len(self) > 0 and self.inferred_type in ['integer', 'boolean']:
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value (pandas/_libs/index.c:4404)()
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value (pandas/_libs/index.c:4087)()
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5210)()
KeyError: ('CRASH_MONTH', 'occurred at index CRASH_DATE')
Есть идеи?