Ошибка разбора текстового формата caffe.NetParameter: caffe.LayerParameter не имеет поля с именем «upsample_param» - PullRequest
0 голосов
/ 25 февраля 2019

Я пытался преобразовать darknet в caffe (вдохновленный этим исходным кодом: https://github.com/ChenYingpeng/caffe-yolov3, который касается преобразования между pytorch, darknet и caffe).Однако, я получил эту ошибку:

[libprotobuf ERROR google/protobuf/text_format.cc:274] Error parsing text-format caffe.NetParameter: 2622:20: Message type "caffe.LayerParameter" has no field named "upsample_param".
WARNING: Logging before InitGoogleLogging() is written to STDERR
F0224 23:43:05.536036 7907 upgrade_proto.cpp:90] Check failed: ReadProtoFromTextFile(param_file, param) Failed to parse NetParameter file: yolov3.prototxt
*** Check failure stack trace: ***
Aborted (core dumped)

это код:

# The caffe module needs to be on the Python path;
#  we'll add it here explicitly.
caffe_root='/home/chen/caffe/'
#os.chdir(caffe_root)
import sys
sys.path.insert(0,caffe_root+'python')
import caffe
import numpy as np
from collections import OrderedDict
from cfg import *
from prototxt import *

def darknet2caffe(cfgfile, weightfile, protofile, caffemodel):
    net_info = cfg2prototxt(cfgfile)
    save_prototxt(net_info , protofile, region=False)

    net = caffe.Net(protofile, caffe.TEST)
    params = net.params

    blocks = parse_cfg(cfgfile)

    #Open the weights file
    fp = open(weightfile, "rb")

    #The first 4 values are header information 
    # 1. Major version number
    # 2. Minor Version Number
    # 3. Subversion number 
    # 4. IMages seen 
    header = np.fromfile(fp, dtype = np.int32, count = 5)

    #fp = open(weightfile, 'rb')
    #header = np.fromfile(fp, count=5, dtype=np.int32)
    #header = np.ndarray(shape=(5,),dtype='int32',buffer=fp.read(20))
    #print(header)
    buf = np.fromfile(fp, dtype = np.float32)
    #print(buf)
    fp.close()

    layers = []
    layer_id = 1
    start = 0
    for block in blocks:
        if start >= buf.size:
            break

        if block['type'] == 'net':
            continue
        elif block['type'] == 'convolutional':
            batch_normalize = int(block['batch_normalize'])
            if block.has_key('name'):
                conv_layer_name = block['name']
                bn_layer_name = '%s-bn' % block['name']
                scale_layer_name = '%s-scale' % block['name']
            else:
                conv_layer_name = 'layer%d-conv' % layer_id
                bn_layer_name = 'layer%d-bn' % layer_id
                scale_layer_name = 'layer%d-scale' % layer_id

            if batch_normalize:
                start = load_conv_bn2caffe(buf, start, params[conv_layer_name], params[bn_layer_name], params[scale_layer_name])
            else:
                start = load_conv2caffe(buf, start, params[conv_layer_name])
            layer_id = layer_id+1
        elif block['type'] == 'depthwise_convolutional':
            batch_normalize = int(block['batch_normalize'])
            if block.has_key('name'):
                conv_layer_name = block['name']
                bn_layer_name = '%s-bn' % block['name']
                scale_layer_name = '%s-scale' % block['name']
            else:
                conv_layer_name = 'layer%d-dwconv' % layer_id
                bn_layer_name = 'layer%d-bn' % layer_id
                scale_layer_name = 'layer%d-scale' % layer_id

            if batch_normalize:
                start = load_conv_bn2caffe(buf, start, params[conv_layer_name], params[bn_layer_name], params[scale_layer_name])
            else:
                start = load_conv2caffe(buf, start, params[conv_layer_name])
            layer_id = layer_id+1
        elif block['type'] == 'connected':
            if block.has_key('name'):
                fc_layer_name = block['name']
            else:
                fc_layer_name = 'layer%d-fc' % layer_id
            start = load_fc2caffe(buf, start, params[fc_layer_name])
            layer_id = layer_id+1
        elif block['type'] == 'maxpool':
            layer_id = layer_id+1
        elif block['type'] == 'avgpool':
            layer_id = layer_id+1
        elif block['type'] == 'region':
            layer_id = layer_id + 1
        elif block['type'] == 'route':
            layer_id = layer_id + 1
        elif block['type'] == 'shortcut':
            layer_id = layer_id + 1
        elif block['type'] == 'softmax':
            layer_id = layer_id + 1
        elif block['type'] == 'cost':
            layer_id = layer_id + 1
    elif block['type'] == 'upsample':
        layer_id = layer_id + 1
        else:
            print('unknow layer type %s ' % block['type'])
            layer_id = layer_id + 1
    print('save prototxt to %s' % protofile)
    save_prototxt(net_info , protofile, region=True)
    print('save caffemodel to %s' % caffemodel)
    net.save(caffemodel)

def load_conv2caffe(buf, start, conv_param):
    weight = conv_param[0].data
    bias = conv_param[1].data
    conv_param[1].data[...] = np.reshape(buf[start:start+bias.size], bias.shape);   start = start + bias.size
    conv_param[0].data[...] = np.reshape(buf[start:start+weight.size], weight.shape); start = start + weight.size
    return start

def load_fc2caffe(buf, start, fc_param):
    weight = fc_param[0].data
    bias = fc_param[1].data
    fc_param[1].data[...] = np.reshape(buf[start:start+bias.size], bias.shape);   start = start + bias.size
    fc_param[0].data[...] = np.reshape(buf[start:start+weight.size], weight.shape); start = start + weight.size
    return start


def load_conv_bn2caffe(buf, start, conv_param, bn_param, scale_param):
    conv_weight = conv_param[0].data
    running_mean = bn_param[0].data
    running_var = bn_param[1].data
    scale_weight = scale_param[0].data
    scale_bias = scale_param[1].data



    scale_param[1].data[...] = np.reshape(buf[start:start+scale_bias.size], scale_bias.shape); start = start + scale_bias.size
    #print scale_bias.size
    #print scale_bias

    scale_param[0].data[...] = np.reshape(buf[start:start+scale_weight.size], scale_weight.shape); start = start + scale_weight.size
    #print scale_weight.size

    bn_param[0].data[...] = np.reshape(buf[start:start+running_mean.size], running_mean.shape); start = start + running_mean.size
    #print running_mean.size

    bn_param[1].data[...] = np.reshape(buf[start:start+running_var.size], running_var.shape); start = start + running_var.size
    #print running_var.size

    bn_param[2].data[...] = np.array([1.0])
    conv_param[0].data[...] = np.reshape(buf[start:start+conv_weight.size], conv_weight.shape); start = start + conv_weight.size
    #print conv_weight.size

    return start

def cfg2prototxt(cfgfile):
    blocks = parse_cfg(cfgfile)

    prev_filters = 3
    layers = []
    props = OrderedDict() 
    bottom = 'data'
    layer_id = 1
    topnames = dict()
    for block in blocks:
        if block['type'] == 'net':
            props['name'] = 'Darkent2Caffe'
            props['input'] = 'data'
            props['input_dim'] = ['1']
            props['input_dim'].append(block['channels'])
            props['input_dim'].append(block['height'])
            props['input_dim'].append(block['width'])
            continue
        elif block['type'] == 'convolutional':
            conv_layer = OrderedDict()
            conv_layer['bottom'] = bottom
            if block.has_key('name'):
                conv_layer['top'] = block['name']
                conv_layer['name'] = block['name']
            else:
                conv_layer['top'] = 'layer%d-conv' % layer_id
                conv_layer['name'] = 'layer%d-conv' % layer_id
            conv_layer['type'] = 'Convolution'
            convolution_param = OrderedDict()
            convolution_param['num_output'] = block['filters']
            prev_filters = block['filters']
            convolution_param['kernel_size'] = block['size']
            if block['pad'] == '1':
                convolution_param['pad'] = str(int(convolution_param['kernel_size'])/2)
            convolution_param['stride'] = block['stride']
            if block['batch_normalize'] == '1':
                convolution_param['bias_term'] = 'false'
            else:
                convolution_param['bias_term'] = 'true'
            conv_layer['convolution_param'] = convolution_param
            layers.append(conv_layer)
            bottom = conv_layer['top']

            if block['batch_normalize'] == '1':
                bn_layer = OrderedDict()
                bn_layer['bottom'] = bottom
                bn_layer['top'] = bottom
                if block.has_key('name'):
                    bn_layer['name'] = '%s-bn' % block['name']
                else:
                    bn_layer['name'] = 'layer%d-bn' % layer_id
                bn_layer['type'] = 'BatchNorm'
                batch_norm_param = OrderedDict()
                batch_norm_param['use_global_stats'] = 'true'
                bn_layer['batch_norm_param'] = batch_norm_param
                layers.append(bn_layer)

                scale_layer = OrderedDict()
                scale_layer['bottom'] = bottom
                scale_layer['top'] = bottom
                if block.has_key('name'):
                    scale_layer['name'] = '%s-scale' % block['name']
                else:
                    scale_layer['name'] = 'layer%d-scale' % layer_id
                scale_layer['type'] = 'Scale'
                scale_param = OrderedDict()
                scale_param['bias_term'] = 'true'
                scale_layer['scale_param'] = scale_param
                layers.append(scale_layer)

            if block['activation'] != 'linear':
                relu_layer = OrderedDict()
                relu_layer['bottom'] = bottom
                relu_layer['top'] = bottom
                if block.has_key('name'):
                    relu_layer['name'] = '%s-act' % block['name']
                else:
                    relu_layer['name'] = 'layer%d-act' % layer_id
                relu_layer['type'] = 'ReLU'
                if block['activation'] == 'leaky':
                    relu_param = OrderedDict()
                    relu_param['negative_slope'] = '0.1'
                    relu_layer['relu_param'] = relu_param
                layers.append(relu_layer)
            topnames[layer_id] = bottom
            layer_id = layer_id+1
        elif block['type'] == 'depthwise_convolutional':
            conv_layer = OrderedDict()
            conv_layer['bottom'] = bottom
            if block.has_key('name'):
                conv_layer['top'] = block['name']
                conv_layer['name'] = block['name']
            else:
                conv_layer['top'] = 'layer%d-dwconv' % layer_id
                conv_layer['name'] = 'layer%d-dwconv' % layer_id
            conv_layer['type'] = 'ConvolutionDepthwise'
            convolution_param = OrderedDict()
            convolution_param['num_output'] = prev_filters
            convolution_param['kernel_size'] = block['size']
            if block['pad'] == '1':
                convolution_param['pad'] = str(int(convolution_param['kernel_size'])/2)
            convolution_param['stride'] = block['stride']
            if block['batch_normalize'] == '1':
                convolution_param['bias_term'] = 'false'
            else:
                convolution_param['bias_term'] = 'true'
            conv_layer['convolution_param'] = convolution_param
            layers.append(conv_layer)
            bottom = conv_layer['top']

            if block['batch_normalize'] == '1':
                bn_layer = OrderedDict()
                bn_layer['bottom'] = bottom
                bn_layer['top'] = bottom
                if block.has_key('name'):
                    bn_layer['name'] = '%s-bn' % block['name']
                else:
                    bn_layer['name'] = 'layer%d-bn' % layer_id
                bn_layer['type'] = 'BatchNorm'
                batch_norm_param = OrderedDict()
                batch_norm_param['use_global_stats'] = 'true'
                bn_layer['batch_norm_param'] = batch_norm_param
                layers.append(bn_layer)

                scale_layer = OrderedDict()
                scale_layer['bottom'] = bottom
                scale_layer['top'] = bottom
                if block.has_key('name'):
                    scale_layer['name'] = '%s-scale' % block['name']
                else:
                    scale_layer['name'] = 'layer%d-scale' % layer_id
                scale_layer['type'] = 'Scale'
                scale_param = OrderedDict()
                scale_param['bias_term'] = 'true'
                scale_layer['scale_param'] = scale_param
                layers.append(scale_layer)

            if block['activation'] != 'linear':
                relu_layer = OrderedDict()
                relu_layer['bottom'] = bottom
                relu_layer['top'] = bottom
                if block.has_key('name'):
                    relu_layer['name'] = '%s-act' % block['name']
                else:
                    relu_layer['name'] = 'layer%d-act' % layer_id
                relu_layer['type'] = 'ReLU'
                if block['activation'] == 'leaky':
                    relu_param = OrderedDict()
                    relu_param['negative_slope'] = '0.1'
                    relu_layer['relu_param'] = relu_param
                layers.append(relu_layer)
            topnames[layer_id] = bottom
            layer_id = layer_id+1
        elif block['type'] == 'maxpool':
            max_layer = OrderedDict()
            max_layer['bottom'] = bottom
            if block.has_key('name'):
                max_layer['top'] = block['name']
                max_layer['name'] = block['name']
            else:
                max_layer['top'] = 'layer%d-maxpool' % layer_id
                max_layer['name'] = 'layer%d-maxpool' % layer_id
            max_layer['type'] = 'Pooling'
            pooling_param = OrderedDict()
            pooling_param['stride'] = block['stride']
            pooling_param['pool'] = 'MAX'
            if (int(block['size']) - int(block['stride'])) % 2 == 0:
        pooling_param['kernel_size'] = block['size']
                pooling_param['pad'] = str((int(block['size'])-1)/2)

            if (int(block['size']) - int(block['stride'])) % 2 == 1:
                pooling_param['kernel_size'] = str(int(block['size']) + 1)
                pooling_param['pad'] = str((int(block['size']) + 1)/2)

            max_layer['pooling_param'] = pooling_param
            layers.append(max_layer)
            bottom = max_layer['top']
            topnames[layer_id] = bottom
            layer_id = layer_id+1
        elif block['type'] == 'avgpool':
            avg_layer = OrderedDict()
            avg_layer['bottom'] = bottom
            if block.has_key('name'):
                avg_layer['top'] = block['name']
                avg_layer['name'] = block['name']
            else:
                avg_layer['top'] = 'layer%d-avgpool' % layer_id
                avg_layer['name'] = 'layer%d-avgpool' % layer_id
            avg_layer['type'] = 'Pooling'
            pooling_param = OrderedDict()
            pooling_param['kernel_size'] = 7
            pooling_param['stride'] = 1
            pooling_param['pool'] = 'AVE'
            avg_layer['pooling_param'] = pooling_param
            layers.append(avg_layer)
            bottom = avg_layer['top']
            topnames[layer_id] = bottom
            layer_id = layer_id+1
        elif block['type'] == 'region':
            if True:
                region_layer = OrderedDict()
                region_layer['bottom'] = bottom
                if block.has_key('name'):
                    region_layer['top'] = block['name']
                    region_layer['name'] = block['name']
                else:
                    region_layer['top'] = 'layer%d-region' % layer_id
                    region_layer['name'] = 'layer%d-region' % layer_id
                region_layer['type'] = 'Region'
                region_param = OrderedDict()
                region_param['anchors'] = block['anchors'].strip()
                region_param['classes'] = block['classes']
                region_param['num'] = block['num']
                region_layer['region_param'] = region_param
                layers.append(region_layer)
                bottom = region_layer['top']
            topnames[layer_id] = bottom
            layer_id = layer_id + 1

        elif block['type'] == 'route':
            route_layer = OrderedDict()
        layer_name = str(block['layers']).split(',')
        #print(layer_name[0])
        bottom_layer_size = len(str(block['layers']).split(','))
        #print(bottom_layer_size)
        if(1 == bottom_layer_size):
                prev_layer_id = layer_id + int(block['layers'])
                bottom = topnames[prev_layer_id]
                #topnames[layer_id] = bottom
        route_layer['bottom'] = bottom
        if(2 == bottom_layer_size):
        prev_layer_id1 = layer_id + int(layer_name[0])
        #print(prev_layer_id1)
        prev_layer_id2 = int(layer_name[1]) + 1
        print(topnames)
        bottom1 = topnames[prev_layer_id1]
        bottom2 = topnames[prev_layer_id2]
        route_layer['bottom'] = [bottom1, bottom2]
        if(4 == bottom_layer_size):
        prev_layer_id1 = layer_id + int(layer_name[0])
        prev_layer_id2 = layer_id + int(layer_name[1])
        prev_layer_id3 = layer_id + int(layer_name[2])
        prev_layer_id4 = layer_id + int(layer_name[3])

        bottom1 = topnames[prev_layer_id1]
        bottom2 = topnames[prev_layer_id2]
        bottom3 = topnames[prev_layer_id3]
        bottom4 = topnames[prev_layer_id4]
        route_layer['bottom'] = [bottom1, bottom2,bottom3,bottom4]
        if block.has_key('name'):
                route_layer['top'] = block['name']
                route_layer['name'] = block['name']
            else:
                route_layer['top'] = 'layer%d-route' % layer_id
                route_layer['name'] = 'layer%d-route' % layer_id
        route_layer['type'] = 'Concat'
        print(route_layer)
        layers.append(route_layer)
        bottom = route_layer['top']
        print(layer_id)
            topnames[layer_id] = bottom
        layer_id = layer_id + 1

    elif block['type'] == 'upsample':
        upsample_layer = OrderedDict()
        print(block['stride'])
        upsample_layer['bottom'] = bottom
        if block.has_key('name'):
                upsample_layer['top'] = block['name']
                upsample_layer['name'] = block['name']
            else:
                upsample_layer['top'] = 'layer%d-upsample' % layer_id
                upsample_layer['name'] = 'layer%d-upsample' % layer_id
        upsample_layer['type'] = 'Upsample'
        upsample_param = OrderedDict()
        upsample_param['scale'] = block['stride']
        upsample_layer['upsample_param'] = upsample_param
        print(upsample_layer)
        layers.append(upsample_layer)
        bottom = upsample_layer['top']
        print('upsample:',layer_id)
            topnames[layer_id] = bottom
        layer_id = layer_id + 1

        elif block['type'] == 'shortcut':
            prev_layer_id1 = layer_id + int(block['from'])
            prev_layer_id2 = layer_id - 1
            bottom1 = topnames[prev_layer_id1]
            bottom2= topnames[prev_layer_id2]
            shortcut_layer = OrderedDict()
            shortcut_layer['bottom'] = [bottom1, bottom2]
            if block.has_key('name'):
                shortcut_layer['top'] = block['name']
                shortcut_layer['name'] = block['name']
            else:
                shortcut_layer['top'] = 'layer%d-shortcut' % layer_id
                shortcut_layer['name'] = 'layer%d-shortcut' % layer_id
            shortcut_layer['type'] = 'Eltwise'
            eltwise_param = OrderedDict()
            eltwise_param['operation'] = 'SUM'
            shortcut_layer['eltwise_param'] = eltwise_param
            layers.append(shortcut_layer)
            bottom = shortcut_layer['top']

            if block['activation'] != 'linear':
                relu_layer = OrderedDict()
                relu_layer['bottom'] = bottom
                relu_layer['top'] = bottom
                if block.has_key('name'):
                    relu_layer['name'] = '%s-act' % block['name']
                else:
                    relu_layer['name'] = 'layer%d-act' % layer_id
                relu_layer['type'] = 'ReLU'
                if block['activation'] == 'leaky':
                    relu_param = OrderedDict()
                    relu_param['negative_slope'] = '0.1'
                    relu_layer['relu_param'] = relu_param
                layers.append(relu_layer)
            topnames[layer_id] = bottom
            layer_id = layer_id + 1           

        elif block['type'] == 'connected':
            fc_layer = OrderedDict()
            fc_layer['bottom'] = bottom
            if block.has_key('name'):
                fc_layer['top'] = block['name']
                fc_layer['name'] = block['name']
            else:
                fc_layer['top'] = 'layer%d-fc' % layer_id
                fc_layer['name'] = 'layer%d-fc' % layer_id
            fc_layer['type'] = 'InnerProduct'
            fc_param = OrderedDict()
            fc_param['num_output'] = int(block['output'])
            fc_layer['inner_product_param'] = fc_param
            layers.append(fc_layer)
            bottom = fc_layer['top']

            if block['activation'] != 'linear':
                relu_layer = OrderedDict()
                relu_layer['bottom'] = bottom
                relu_layer['top'] = bottom
                if block.has_key('name'):
                    relu_layer['name'] = '%s-act' % block['name']
                else:
                    relu_layer['name'] = 'layer%d-act' % layer_id
                relu_layer['type'] = 'ReLU'
                if block['activation'] == 'leaky':
                    relu_param = OrderedDict()
                    relu_param['negative_slope'] = '0.1'
                    relu_layer['relu_param'] = relu_param
                layers.append(relu_layer)
            topnames[layer_id] = bottom
            layer_id = layer_id+1
        else:
            print('unknow layer type %s ' % block['type'])
            topnames[layer_id] = bottom
            layer_id = layer_id + 1

    net_info = OrderedDict()
    net_info['props'] = props
    net_info['layers'] = layers
    return net_info

if __name__ == '__main__':
    import sys
    if len(sys.argv) != 5:
        print('try:')
        print('python darknet2caffe.py tiny-yolo-voc.cfg tiny-yolo-voc.weights tiny-yolo-voc.prototxt tiny-yolo-voc.caffemodel')
        print('')
        print('please add name field for each block to avoid generated name')
        exit()

    cfgfile = sys.argv[1]
    #net_info = cfg2prototxt(cfgfile)
    #print_prototxt(net_info)
    #save_prototxt(net_info, 'tmp.prototxt')
    weightfile = sys.argv[2]
    protofile = sys.argv[3]
    caffemodel = sys.argv[4]
    darknet2caffe(cfgfile, weightfile, protofile, caffemodel)

Я выполнил все шаги, описанные здесь , ядаже создал слой upsample (создав три файла и отредактировав caffe.proto. Мне интересно, почему эта ошибка возникает, так как я создал слой повышающей дискретизации. Любое предложение будет полезным.

...