Расчет разницы в днях по скользящей основе в зависимости от другого столбца - PullRequest
0 голосов
/ 18 октября 2018

Я пытаюсь создать вычисляемый столбец, используя dplyr, чтобы получить разницу дней между базисной датой (текущей) и будущей датой на скользящей основе.Например, у меня есть фрейм данных, такой как -

sample = data.frame(dates = seq(today(), today() + weeks(3), by = 1), qty = 
         floor(100 * rnorm(22)))

Что я хочу достичь, это создать новый столбец, скажем days_to, который будет равен 0, если qty> = 0.Однако, если qty <0, тогда days_to должно быть числом дней, пока количество не превысит 0. Если количество не превысит 0 для любой будущей даты, days_to = NA / Inf (не важно).Поэтому для приведенного выше примера это должно выглядеть примерно так: </p>

dates       qty days_to
10/17/2018  175 0
10/18/2018  -69 2
10/19/2018  -20 1
10/20/2018  113 0
10/21/2018  7   0
10/22/2018  120 0
10/23/2018  48  0
10/24/2018  -31 NA
10/25/2018  -9  NA
10/26/2018  -87 NA

Мне нужно сделать это для большого количества строк (~ 2M) в сгруппированной переменной и, следовательно, попытаться использовать dplyr для достижения этой цели.Любая помощь приветствуется.

Спасибо!

1 Ответ

0 голосов
/ 18 октября 2018

dplyr

library(dplyr)
sampledplyr <- sample %>%
  mutate(grp = cumsum(qty > 0 & lag(qty) < 0)) %>%
  group_by(grp) %>%
  mutate(days_to = if_else(qty < 0, n() - row_number() + 1L, 0L)) %>%
  ungroup() %>%
  select(-grp)
print(sampledplyr, n=22)
# # A tibble: 22 x 3
#    dates        qty days_to
#    <date>     <dbl>   <int>
#  1 2018-10-17   -63       1
#  2 2018-10-18    18       0
#  3 2018-10-19   -84       1
#  4 2018-10-20   159       0
#  5 2018-10-21    32       0
#  6 2018-10-22   -83       1
#  7 2018-10-23    48       0
#  8 2018-10-24    73       0
#  9 2018-10-25    57       0
# 10 2018-10-26   -31       1
# 11 2018-10-27   151       0
# 12 2018-10-28    38       0
# 13 2018-10-29   -63       2
# 14 2018-10-30  -222       1
# 15 2018-10-31   112       0
# 16 2018-11-01    -5       2
# 17 2018-11-02    -2       1
# 18 2018-11-03    94       0
# 19 2018-11-04    82       0
# 20 2018-11-05    59       0
# 21 2018-11-06    91       0
# 22 2018-11-07    78       0

data.table

library(data.table)
sampledt <- as.data.table(sample)
sampledt[,days_to := ifelse(qty < 0, .N - seq_len(nrow(.SD)) + 1L, 0L),
         by = cumsum(qty > 0 & lag(qty) < 0)]

(Тот же вывод.)


Данные:

set.seed(1) # alway
sample = data.frame(dates = seq(Sys.Date(), Sys.Date() + 3*7, by = 1),
                    qty = floor(100 * rnorm(22)))
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...