Я недавно начал изучать, как построить модель LSTM для многомерных данных временных рядов.Я посмотрел здесь и здесь о том, как дополнить последовательности и реализовать модель LSTM «многие ко многим».Я создал фрейм данных для тестирования модели, но получаю сообщение об ошибке (ниже).
d = {'ID':['a12', 'a12','a12','a12','a12','b33','b33','b33','b33','v55','v55','v55','v55','v55','v55'], 'Exp_A':[2.2,2.2,2.2,2.2,2.2,3.1,3.1,3.1,3.1,1.5,1.5,1.5,1.5,1.5,1.5],
'Exp_B':[2.4,2.4,2.4,2.4,2.4,1.2,1.2,1.2,1.2,1.5,1.5,1.5,1.5,1.5,1.5],
'A':[0,0,1,0,1,0,1,0,1,0,1,1,1,0,1], 'B':[0,0,1,1,1,0,0,1,1,1,0,0,1,0,1],
'Time_Interval': ['11:00:00', '11:10:00', '11:20:00', '11:30:00', '11:40:00',
'11:00:00', '11:10:00', '11:20:00', '11:30:00',
'11:00:00', '11:10:00', '11:20:00', '11:30:00', '11:40:00', '11:50:00']}
df = pd.DataFrame(d)
df.set_index('Time_Interval', inplace=True)
Я попытался набить с помощью грубой силы:
from keras.preprocessing.sequence import pad_sequences
x1 = df['A'][df['ID']== 'a12']
x2 = df['A'][df['ID']== 'b33']
x3 = df['A'][df['ID']== 'v55']
mx = df['ID'].size().max() # Find the largest group
seq1 = [x1, x2, x3]
padded1 = np.array(pad_sequences(seq1, maxlen=6, dtype='float32')).reshape(-1,mx,1)
Аналогичным образом я создал padded2
, padded3
и padded4
для каждой функции:
padded_data = np.dstack((padded1, padded1, padded3, padded4))
padded_data.shape = (3, 6, 4)
padded_data
array([[[0. , 0. , 0. , 0. ],
[0. , 0. , 2.2, 2.4],
[0. , 0. , 2.2, 2.4],
[1. , 1. , 2.2, 2.4],
[0. , 0. , 2.2, 2.4],
[1. , 1. , 2.2, 2.4]],
[[0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. ],
[0. , 0. , 3.1, 1.2],
[1. , 1. , 3.1, 1.2],
[0. , 0. , 3.1, 1.2],
[1. , 1. , 3.1, 1.2]],
[[0. , 0. , 1.5, 1.5],
[1. , 1. , 1.5, 1.5],
[1. , 1. , 1.5, 1.5],
[1. , 1. , 1.5, 1.5],
[0. , 0. , 1.5, 1.5],
[1. , 1. , 1.5, 1.5]]], dtype=float32)
edit
#split into train/test
train = pad_1[:2] # train on the 1st two samples.
test = pad_1[-1:]
train_X = train[:,:-1] # one step ahead prediction.
train_y = train[:,1:]
test_X = test[:,:-1] # test on the last sample
test_y = test[:,1:]
# check shapes
print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)
#(2, 5, 4) (2, 5, 4) (1, 5, 4) (1, 5, 4)
# design network
model = Sequential()
model.add(Masking(mask_value=0., input_shape=(train.shape[1], train.shape[2])))
model.add(LSTM(32, input_shape=(train.shape[1], train.shape[2]), return_sequences=True))
model.add(Dense(4))
model.compile(loss='mae', optimizer='adam', metrics=['accuracy'])
model.summary()
# fit network
history = model.fit(train, test, epochs=300, validation_data=(test_X, test_y), verbose=2, shuffle=False)
[! [Введите описание изображения здесь] [3]] [3]
Так что мои вопросы:
- Конечно, должен быть эффективный способ преобразования данных?
- Скажем, я хочу одноэтапное предсказание для будущей последовательности, у меня есть
first time-step
= array([[[0.5 , 0.9 , 2.5, 3.5]]], dtype=float32)
Где первый временной шаг - это один «кадр» последовательности.Как настроить модель, чтобы включить это?