У меня есть один вопрос.Я хочу напечатать матрицу путаницы.моя модель является функциональной API керас.и модель = Модель (входы = [data_input], выходы = [output_1, output_2])
output_1 = 9 классов output_2 = 5 классов
Моя модель мультиклассификации
data_input = Input(shape=(trainX.shape[1], trainX.shape[2]))
Conv1 = Conv1D(filters=50, kernel_size=4, padding='valid', activation='relu', strides=1)(data_input)
Conv1 = MaxPooling1D(pool_size=2)(Conv1)
Conv2 = Conv1D(filters=50, kernel_size=4, padding='valid', activation='relu', strides=1)(Conv1)
Conv2 = MaxPooling1D(pool_size=2)(Conv2)
Conv3 = Conv1D(filters=50, kernel_size=4, padding='valid', activation='relu', strides=1)(Conv2)
Conv3 = MaxPooling1D(pool_size=2)(Conv3)
Classification1 = LSTM(128, input_shape=(47, 50), return_sequences=False)(Conv3)
Classification2 = GRU(128, input_shape=(47, 50), return_sequences=False)(Conv3)
activity = Dense(9)(Classification1)
activity = Activation('softmax')(activity)
speed = Dense(5)(Classification2)
speed = Activation('softmax')(speed)
model = Model(inputs=[data_input], outputs=[activity, speed])
model.compile(loss= 'categorical_crossentropy' , optimizer='adam', metrics=[ 'accuracy' ])
print(model.summary())
history = model.fit(trainX, {'activation_1': trainY_Activity, 'activation_2': trainY_Speed},
validation_data=(testX, {'activation_1': testY_Activity, 'activation_2': testY_Speed}),
epochs=epochs, batch_size=batch_size, verbose=1, shuffle=False)