Полностью измененный ответ, потому что он работает по-разному с последовательными 1
значениями:
Объяснение :
Решение удаляет каждое последующее 1
сначала where
с логической цепочкой, сравнивая с ne
(не равно !=
) с shift
до NaN
с, заполняя их на ffill
с параметром limit
и последней заменой 0
назад:
n_hold = 2
s = x.where(x.ne(x.shift()) & (x == 1)).ffill(limit=n_hold).fillna(0, downcast='int')
Синхронизация и сравнение выходов:
np.random.seed(123)
x = pd.Series(np.random.choice([0,1], p=(.8,.2), size=1000))
x1 = x.copy()
#print (x)
def orig(x):
n_hold = 2
entry_sig_diff = x.diff()
entry_sig_dt = entry_sig_diff[entry_sig_diff == 1].index
final_signal = x * 0
for i in range(0, len(entry_sig_dt)):
row_idx = entry_sig_diff.index.get_loc(entry_sig_dt[i])
if (row_idx + n_hold) >= len(x):
break
final_signal[row_idx:(row_idx + n_hold + 1)] = 1
return final_signal
#print (orig(x))
n_hold = 2
s = x.where(x.ne(x.shift()) & (x == 1)).ffill(limit=n_hold).fillna(0, downcast='int')
#print (s)
df = pd.concat([x,orig(x1), s], axis=1, keys=('input', 'orig', 'new'))
print (df.head(20))
input orig new
0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 1 1 1
7 0 1 1
8 0 1 1
9 0 0 0
10 0 0 0
11 0 0 0
12 0 0 0
13 0 0 0
14 0 0 0
15 0 0 0
16 0 0 0
17 0 0 0
18 0 0 0
19 0 0 0
#check outputs
#print (s.values == orig(x).values)
Синхронизация :
%timeit (orig(x))
24.8 ms ± 653 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit x.where(x.ne(x.shift()) & (x == 1)).ffill(limit=n_hold).fillna(0, downcast='int')
1.36 ms ± 12.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)