Подход № 1: Мы можем использовать matrix-multiplication
с некоторой помощью от braodcasting
-
mask = labels == np.arange(labels.max()+1)[:,None]
out = mask.dot(points)/np.bincount(labels).astype(float)[:,None]
Пробный прогон -
In [36]: points = np.array([[3, 2], [4, 4], [5, 4], [4, 2], [4, 6], [9, 5]])
...: labels = np.array([0, 1, 1, 0, 2, 1])
# Original soln
In [37]: L = labels.max()+1
In [38]: np.array([points[labels==k].mean(axis=0) for k in range(L)])
Out[38]:
array([[3.5 , 2. ],
[6. , 4.33333333],
[4. , 6. ]])
# Proposed soln
In [39]: mask = labels == np.arange(labels.max()+1)[:,None]
...: out = mask.dot(points)/np.bincount(labels).astype(float)[:,None]
In [40]: out
Out[40]:
array([[3.5 , 2. ],
[6. , 4.33333333],
[4. , 6. ]])
Подход № 2: С np.add.at
-
sums = np.zeros((labels.max()+1,points.shape[1]),dtype=float)
np.add.at(sums,labels,points)
out = sums/np.bincount(labels).astype(float)[:,None]
Подход № 3: Если все числа из последовательностиот 0 до max-label присутствуют в labels
, мы также можем использовать np.add.reduceat
-
sidx = labels.argsort()
sorted_points = points[sidx]
sums = np.add.reduceat(sorted_points,np.r_[0,np.bincount(labels)[:-1].cumsum()])
out = sums/np.bincount(labels).astype(float)[:,None]