Это не типичный вопрос SO, но вот ответ.
Конечно, ваша модель не отвечает на ваш вопрос, так как это модель нейрона.Для соединений (синапсов в мозге или где-либо еще) вам нужна модель для синапсов.В биологии пресинаптический скачок (то есть «входной скачок» в синапс) вызывает зависящее от времени изменение проводимости постсинаптической мембраны.Форма этого изменения проводимости в биологическом приближении имеет так называемую двойную экспоненциальную форму:
where the presynaptic spike occured at time 0.
This conductance change leads to a (time-dependent) current into the postsynaptic neuron (i.e. the neuron receiving the input). For simplicity, many models model the input current directly. The common shapes are
- double exponential (realistic)
- alpha (similar to double exponential)
- exponential (simpler and still captures the most important property)
- rectangular (simpler, and convenient for theoretical models)
- delta shaped (simplest, just a single pulse for one time step).
Here's a comparison scaled for same height at max:
and scaled for same overall current (so integral over the time course):
So how does a spike lead to an input current in another neuron in spiking NN models?
Assuming you model currents directly, you need to make a choice of the time course of the current which you want to use in your model. Then, every time a neuron spikes, you inject a current of the shape you chose into the connected neuron.
As an example, using exponential currents: the postsynaptic neuron has a variable I_syn
which gives the synaptic input, each time a presynaptic neuron spikes, it is incremented by the weight of the connection, in all other time steps it decays exponentially with time constant of the synapse (the decay of the exponential).
Pseudocode:
// processing at time step t
I_syn *= exp(-delta_t / tau_synapse) // delta_t is your simulation time step
foreach presynaptic_spike of neuron j:
I_syn += weight_of_connection(j)
The topic isn't answered with a plot or two, or with a single equation. I just wanted to point out the main concepts. You can find more details the Compuational Neuroscience textbook of your choice, e.g. in Нейрональная динамика Герстнера (доступна на веб-сайте) .