Вот как выглядит маятник тележки
Представьте, что у вас есть 4 дифференциальных уравнения, которые представляют движение динамической системы ( маятник на тележке ) иВы решили эти уравнения, используя scipy.integrate.odeint в течение 10 секунд с интервалом 0,01 секунды.
Наконец, вы получаете матрицу решения с размером (1000,4).За каждое различие вы получаете 1000 точек данных.Пока все в порядке.Например, если я нарисую одно из движений, я получу красивую графику. ( На рисунке ниже показано движение маятникового стержня (колебание) )
Вот График тета-угла
Но вместо скучной графики я хочу сделать анимацию, которая показывает движение тележки, как это сделал Стив Брантон, как показано ниже, по ссылке с использованием Matlab.Вот ссылка на видео в ожидании корзины !
=========================================================================
Для анимации фигур яна самом деле пытался сделать то, что сделал Стив Брантон в Matlab с Python.Но результат - просто замороженная фигура, а не движущаяся.На самом деле, если я запускаю этот сценарий из Spyder IDE, я получаю 1000 фигур в консоли IPython. ( Каждая цифра представляет собой снимок мгновенного движения системы, что хорошо. Но мне нужна только одна фигура с 1000 последовательных кадров на ней.)
Вот снимок замороженной корзины-ожидания
Я написал два скрипта Python.Один только для построения графика, другой - для решения дифференциальных уравнений и передачи результатов другому.
~~~~~~~~~~~~~~~~~~~~~~~~~
Этот код предназначен для построения анимированных фигур.
from math import sqrt, sin, cos
import matplotlib.pyplot as plt
from matplotlib import animation
def draw_cart(states, m, M, L):
x = states[0] # Position of the center of the cart
theta = states[3] # Angle of the pendulum rod
#Dimensions
W = 1*sqrt(M/5) # Cart width
H = .5*sqrt(M/5) # Cart Height
wr = .2 # Wheel radius
mr = .3*sqrt(m) # Mass Radius
#Positions
y = wr/2+ H/2 # Cart Vertical Position
w1x = x-.9*W/2 # Left Wheel x coordinate
w1y = 0 # Left wheel y coordinate
w2x = x+(.9*W/2) # Right Wheel x coordinate
w2y = 0 # Right Wheel y coordinate
# Pendulum Mass x-y coordinates
px = x+(L*sin(theta))
py = y-(L*cos(theta))
#Identfying Figure
plt.figure()
plt.axes(xlim=(-5, 5), ylim=(-2, 2.5))
# Plotting the base line
line = plt.Line2D((-10, 10), (0, 0), color='k', linewidth=2)
plt.gca().add_line(line)
plt.hold(True)
# Shapes
rectangle1 = plt.Rectangle((x-(W/2), (y-H/2)), W, H, fill=True, color='b') # Cart
rectangle2= plt.Rectangle((px-(mr/2), py-(mr/2)), mr, mr, fill=True, color='r') # Pendulum mass
circle2 = plt.Circle((w1x, w1y), wr/2, fill=True, color='g') #Left whell
circle3 = plt.Circle((w2x, w2y), wr/2, fill=True, color='g') #Right whell
plt.plot((x, px), (y, py), 'k', lw=2) #Pendulum rod
#Adding shapes to the figure
plt.gca().add_patch(rectangle1)
plt.gca().add_patch(rectangle2)
plt.gca().add_patch(circle2)
plt.gca().add_patch(circle3)
# Showing the figure
plt.show()
plt.hold(False)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Это другой код для решения дифференциальных уравнений и подачи решения в приведенный выше код.
from math import pi, sin, cos
import numpy as np
from scipy.integrate import odeint
import draw_cart_pend_rt
import matplotlib.pyplot as plt
# System Parameters
m = 1
M = 5
L = 2
g = -10
d = 1
u = 0
def cart_pend_dynamics(states, tspan):
Sy = sin(states[2])
Cy = cos(states[2])
D = m*L*L*(M+(m*(1-(Cy**2))))
state_derivatives = np.zeros_like(states)
state_derivatives[0] = states[1]
state_derivatives[1] = ((1/D)*(((-m**2)*(L**2)*g*Cy*Sy)+(m*(L**2)*(m*L*(states[3]**2)*Sy-d*(states[1])))))+(m*L*L*(1/D)*u)
state_derivatives[2] = states[3]
state_derivatives[3] = ((1/D)*((m+M)*m*g*L*Sy-m*L*Cy*(m*L*(states[3])**2*Sy-d*states[1])))-(m*L*Cy*(1/D)*u)+(0.01*1)
return state_derivatives
def solution_of_cartpend(dt):
# Initial conditions to solve diff eqs
states = np.array([0.0, 0.0, pi, 0.5]) # Left to right, cart; position-velocity, pend mass; angle-angular velocity
tspan = np.arange(0, 10, dt)
state_sol = odeint(cart_pend_dynamics, states, tspan)
return state_sol
# Time Interval
dt = 0.01
solution = solution_of_cartpend(dt)
x_den, y_den = solution.shape
# Validating the solution
plt.axes(xlim=(0,10), ylim=(-10,10))
t = np.arange(0, 10, dt)
plt.gca().plot(t, (solution[:, 2]), 'b', label='theta1')
# Animating the figures
for i in range(x_den):
draw_cart_pend_rt.draw_cart(solution[i,:], m, M, L)