В настоящее время я работаю над созданием нейронной сети в Python, и я застрял в этой проблеме.
- Я уравновесил свои данные с помощью повышающей дискретизации, поэтому балансировка данных не должна быть проблемой.
- Для моих ярлыков есть 8 классов и 354 функции.Я использовал один горячий вектор на образец, чтобы преобразовать класс / метку 4 в
[0, 0, 0, 1, 0, 0, 0, 0]
- , используя сигмоид для 2 скрытых слоев и вывода, пробовал использовать softmax на выходном слое, но с той же проблемой
Проблема:
Что здесь может быть не так?
Код для training()
def train(self, test_set, test_labels, validation_set, validation_label):
total_error = numpy.zeros((max_epoch, 1))
# temporary values, use reshape
size_of_traning_set = len(test_set)
len_test_set_col = len(test_set[0])
len_test_label_col = len(test_labels[0])
for count in range(0, max_epoch):
random_permutations = numpy.random.permutation(size_of_traning_set)
for count_2 in range(0, size_of_traning_set):
random_index = random_permutations[count_2]
x_in = numpy.reshape(test_set[random_index], (len_test_set_col, 1))
d_out = numpy.reshape(test_labels[random_index], (len_test_label_col, 1))
# forward propagation
# 1st hidden layer
v_hidden_layer_1 = numpy.add(numpy.dot(self.layer_one_weights, x_in), self.layer_one_bias)
y_hidden_layer_1 = compute_activation(v_hidden_layer_1)
# 2nd hidden layer
v_hidden_layer_2 = numpy.add(numpy.dot(self.layer_two_weights, y_hidden_layer_1), self.layer_two_bias)
y_hidden_layer_2 = compute_activation(v_hidden_layer_2)
v_output_layer = numpy.add(numpy.dot(self.output_layer_weights, y_hidden_layer_2), self.output_layer_bias)
final_output = compute_activation(v_output_layer)
error_vector = d_out - final_output
# compute gradient in output layer
delta_output_x = numpy.multiply(error_vector, final_output)
one_minus_out = 1 - final_output
delta_output = numpy.multiply(delta_output_x, one_minus_out)
# compute gradient in hidden layer 2
one_minus_y_h2 = 1 - y_hidden_layer_2
output_layer_weights_trans = numpy.transpose(self.output_layer_weights)
deriv_hidden_layer_2_x = numpy.multiply(y_hidden_layer_2, one_minus_y_h2)
deriv_out_layer = numpy.dot(output_layer_weights_trans, delta_output)
delta_hidden_layer_2 = numpy.multiply(deriv_hidden_layer_2_x, deriv_out_layer)
# compute gradient in hidden layer 1
one_minus_y_h1 = 1 - y_hidden_layer_1
hidden_layer_2_weights_trans = numpy.transpose(self.layer_two_weights)
deriv_hidden_layer_1_x = numpy.multiply(y_hidden_layer_1, one_minus_y_h1)
deriv_layer_2 = numpy.dot(hidden_layer_2_weights_trans, delta_hidden_layer_2)
delta_hidden_layer_1 = numpy.multiply(deriv_hidden_layer_1_x, deriv_layer_2)
# update weights and biases of output layer
self.output_layer_weights = self.output_layer_weights + \
numpy.multiply(self.learning_rate, numpy.dot(delta_output,
numpy.reshape(y_hidden_layer_2, (1, self.number_of_layer_2))))
self.output_layer_bias = self.output_layer_bias + numpy.multiply(self.learning_rate, delta_output)
# update weights and biases of hidden layer 2
self.layer_two_weights = self.layer_two_weights + \
numpy.multiply(self.learning_rate, numpy.dot(delta_hidden_layer_2,
numpy.reshape(y_hidden_layer_1, (1, self.number_of_layer_1))))
self.layer_two_bias = self.layer_two_bias + numpy.multiply(self.learning_rate, delta_hidden_layer_2)
# update weights and biases of hidden layer 1
self.layer_one_weights = self.layer_one_weights + \
numpy.multiply(self.learning_rate, numpy.dot(delta_hidden_layer_1,
numpy.reshape(x_in, (1, self.number_of_inputs))))
self.layer_one_bias = self.layer_one_bias + numpy.multiply(self.learning_rate, delta_hidden_layer_1)
err_sum = numpy.multiply(error_vector, error_vector)
err_sum = numpy.divide(err_sum, 2)
total_error[count] = total_error[count] + numpy.sum(err_sum)
print('Epoch: {} Error: {}'.format(count, total_error[count]))
if count % 10 == 0 and count != 0:
self.validate(validation_set, validation_label)