TimeDistributed-несколько слоев одновременно - PullRequest
0 голосов
/ 23 декабря 2018

Я написал следующий скрипт, который читает спецификацию yaml архитектуры CNN-RNN-FCN NN и создает соответствующую модель Keras:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 27 10:22:03 2018

@author: jsevillamol
"""

import yaml, argparse
from contextlib import redirect_stdout

from tensorflow.python.keras.models import Model
from tensorflow.python.keras.layers import Input 
from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, Flatten
from tensorflow.python.keras.layers import TimeDistributed, LSTM
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.layers import BatchNormalization, Dropout

def build_model(
        input_shape, 
        num_classes, 
        data_type,
        activation_function, 
        dropout_rate,
        use_batchnorm,
        cnn_layers,
        lstm_units,
        concat_lstm_output,
        fcn_layers):
    """
    Builds a CNN-RNN-FCN model according to some specs
    """

    # Build a model with the functional API
    inputs = Input(input_shape)
    x = inputs

    # CNN feature extractor    
    for i, cnn_layer in enumerate(cnn_layers):
        # Extract layer params
        filters = cnn_layer['filters']
        kernel_size = cnn_layer['kernel_size']
        use_maxpool = cnn_layer['use_maxpool']

        # build cnn_layer
        x = TimeDistributed(Conv2D(
                filters, 
                kernel_size, 
                strides=(1, 1), 
                padding='same', 
                data_format=None, 
                dilation_rate=(1, 1), 
                activation=activation_function, 
                use_bias=True, 
                kernel_initializer='glorot_uniform', 
                bias_initializer='zeros', 
                kernel_regularizer=None, 
                bias_regularizer=None, 
                activity_regularizer=None, 
                kernel_constraint=None, 
                bias_constraint=None
            ), name=f'conv2D_{i}')(x)

        if use_batchnorm:
            x = TimeDistributed(BatchNormalization(
                    axis=-1, 
                    momentum=0.99, 
                    epsilon=0.001, 
                    center=True, 
                    scale=True, 
                    beta_initializer='zeros', 
                    gamma_initializer='ones', 
                    moving_mean_initializer='zeros', 
                    moving_variance_initializer='ones', 
                    beta_regularizer=None, 
                    gamma_regularizer=None, 
                    beta_constraint=None, 
                    gamma_constraint=None
                ), name=f'batchnorm_{i}')(x)


        # add maxpool if needed
        if use_maxpool:
            x = TimeDistributed(MaxPooling2D(
                    pool_size=(2, 2), 
                    strides=None, 
                    padding='valid', 
                    data_format=None
                ), name=f'maxpool_{i}')(x)

    x = TimeDistributed(Flatten(), name='flatten')(x)
    x = TimeDistributed(Dropout(dropout_rate), name='dropout')(x)

    # LSTM feature combinator
    x = LSTM(
            lstm_units, 
            activation='tanh', 
            recurrent_activation='hard_sigmoid', 
            use_bias=True, 
            kernel_initializer='glorot_uniform', 
            recurrent_initializer='orthogonal', 
            bias_initializer='zeros', 
            unit_forget_bias=True, 
            kernel_regularizer=None, 
            recurrent_regularizer=None, 
            bias_regularizer=None, 
            activity_regularizer=None, 
            kernel_constraint=None, 
            recurrent_constraint=None, 
            bias_constraint=None, 
            dropout=dropout_rate, 
            recurrent_dropout=0.0, 
            implementation=1, 
            return_sequences=concat_lstm_output, 
            return_state=False, 
            go_backwards=False, 
            stateful=False, 
            unroll=False
        )(x)

    if concat_lstm_output:
        x = Flatten()(x)

    # FCN classifier    
    for fcn_layer in fcn_layers:
        # extract layer params
        units = fcn_layer['units']

        # build layer
        x = Dense(
                units, 
                activation=activation_function, 
                use_bias=True, 
                kernel_initializer='glorot_uniform', 
                bias_initializer='zeros', 
                kernel_regularizer=None, 
                bias_regularizer=None, 
                activity_regularizer=None, 
                kernel_constraint=None, 
                bias_constraint=None
            )(x)

        x = Dropout(dropout_rate)(x)


    prediction = Dense(num_classes, activation='softmax')(x)

    # Build model
    model = Model(inputs=inputs, outputs=prediction)

    return model

if __name__=="__main__":
    # parser options
    parser = argparse.ArgumentParser(
            description=("Build a customized cnn-rnn keras model with ctalearn."))

    parser.add_argument(
            'config_file',
            help="path to YAML file containing a training configuration")

    args = parser.parse_args()

    # load config file
    with open(args.config_file, 'r') as config_file:
        config = yaml.load(config_file)

    model = build_model(**config['model_config'])

    # Show model summary through console and then save it to file
    model.summary()

    with open('model_summary.txt', 'w') as f:
        with redirect_stdout(f):
            model.summary()

    # save model architecture to disk in .h5 format
    model.save('untrained_model.h5', include_optimizer=False)

Я хочу добавить новую функцию вПрограмма, которая позволит создавать модели, которые принимают в качестве входных примеров форму (img_length, img_height, n_channels), то есть одно изображение для каждого примера вместо последовательности, как в настоящее время.

Для этого было бы здорово иметь возможностьпримените оболочку TimeDistributed сразу после создания части модели CNN, чтобы мне не приходилось добавлять множество условных выражений повсюду.

Как я могу это сделать?

1 Ответ

0 голосов
/ 23 декабря 2018

Одно изображение можно рассматривать как последовательность длиной один.Следовательно, вы можете легко сделать это с помощью простой проверки и использования слоя Reshape:

inputs = Input(input_shape)
x = inputs

# if the input is a single image,
# reshape it to a sequence of length one
if len(input_shape) == 3:
    x = Reshape((1,) + input_shape)(x)

# the rest is the same
...