Я извлек некоторые функции из изображений в своем наборе данных поезда, затем применил эти функции и разделил данные на поезда и проверил, используя train_test_split
:
Train data : (60, 772)
Test data : (20, 772)
Train labels: (60,)
Test labels : (20,)
Что я хочу сделатьЗатем примените классификатор SVM к моим изображениям в наборе тестовых данных и посмотрите результаты.
# create the model - SVM
#clf = svm.SVC(kernel='linear', C=40)
clf = svm.SVC(kernel='rbf', C=10000.0, gamma=0.0001)
# fit the training data to the model
clf.fit(trainDataGlobal, trainLabelsGlobal)
# path to test data
test_path = "dataset/test"
# loop through the test images
for index,file in enumerate(glob.glob(test_path + "/*.jpg")):
# read the image
image = cv2.imread(file)
# resize the image
image = cv2.resize(image, fixed_size)
# predict label of test image
prediction = clf.predict(testDataGlobal)
prediction = prediction[index]
#print("Accuracy: {}%".format(clf.score(testDataGlobal, testLabelsGlobal) * 100 ))
# show predicted label on image
cv2.putText(image, train_labels[prediction], (20,30), cv2.FONT_HERSHEY_TRIPLEX, .7 , (0,255,255), 2)
# display the output image
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.show()
У меня не очень хорошая точность, хотя я вижу, что это говорит о точности 60%.Тем не менее, большинство изображений помечены неправильно.Я передал неправильный аргумент в prediction
?
Что я могу сделать, чтобы улучшить это?
РЕДАКТИРОВАТЬ : Я пробовал то, что вы сказали, с помощью следующего кода, но я получаю сообщение об ошибке, в котором говорится, что я должен изменить свою feature_vector
.Поэтому я делаю это, и затем я получаю следующую ошибку.
(Для справки: feature_extraction_method(image).shape
- это (772,)
.)
for filename in test_images:
# read the image and resize it to a fixed-size
img = cv2.imread(filename)
img = cv2.resize(img, fixed_size)
feature_vector = feature_extraction_method(img)
prediction = clf.predict(feature_vector.reshape(-1, 1))
cv2.putText(img, prediction, (20, 30), cv2.FONT_HERSHEY_TRIPLEX, .7 , (0, 255, 255), 2)
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-71-2b8ff4146d8e> in <module>()
19
20 feature_vector = feature_extraction_method(img)
---> 21 prediction = clf.predict(feature_vector.reshape(-1, 1))
22 cv2.putText(img, prediction, (20, 30), cv2.FONT_HERSHEY_TRIPLEX, .7 , (0, 255, 255), 2)
23 plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py in predict(self, X)
546 Class labels for samples in X.
547 """
--> 548 y = super(BaseSVC, self).predict(X)
549 return self.classes_.take(np.asarray(y, dtype=np.intp))
550
/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py in predict(self, X)
306 y_pred : array, shape (n_samples,)
307 """
--> 308 X = self._validate_for_predict(X)
309 predict = self._sparse_predict if self._sparse else self._dense_predict
310 return predict(X)
/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py in _validate_for_predict(self, X)
457 raise ValueError("X.shape[1] = %d should be equal to %d, "
458 "the number of features at training time" %
--> 459 (n_features, self.shape_fit_[1]))
460 return X
461
ValueError: X.shape[1] = 1 should be equal to 772, the number of features at training time