Всякий раз, когда вызывается функция encoder-decoder
, она выдает ошибку в строке после функции сглаживания в функции Multiply:
ValueError: Операнды не могут передаваться вместе с фигурами (None, 128) (300,)
И это показывает размер и содержание переменных train_data и data:
И это функция:
def encoder_decoder(data):
print('Encoder_Decoder LSTM...')
"""__encoder___"""
encoder_inputs = Input(shape=en_shape)
encoder_LSTM = LSTM(hidden_units,dropout_U=0.2,dropout_W=0.2,return_sequences=True,return_state=True)
encoder_LSTM_rev=LSTM(hidden_units,return_state=True,return_sequences=True,dropout_U=0.05,dropout_W=0.05,go_backwards=True)
encoder_outputs, state_h, state_c = encoder_LSTM(encoder_inputs)
encoder_outputsR, state_hR, state_cR = encoder_LSTM_rev(encoder_inputs)
state_hfinal=Add()([state_h,state_hR])
state_cfinal=Add()([state_c,state_cR])
encoder_outputs_final = Add()([encoder_outputs,encoder_outputsR])
encoder_states = [state_hfinal,state_cfinal]
"""____decoder___"""
decoder_inputs = Input(shape=(None,de_shape[1]))
decoder_LSTM = LSTM(hidden_units,return_sequences=True,dropout_U=0.2,dropout_W=0.2,return_state=True)
decoder_outputs, _, _ = decoder_LSTM(decoder_inputs,initial_state=encoder_states)
#Pull out XGBoost, (I mean attention)
attention = TimeDistributed(Dense(1, activation = 'tanh'))(encoder_outputs_final)
attention = Flatten()(attention)
attention = Multiply()([decoder_outputs, attention])
attention = Activation('softmax')(attention)
attention = Permute([2, 1])(attention)
decoder_dense = Dense(de_shape[1],activation='softmax')
decoder_outputs = decoder_dense(attention)
model= Model(inputs=[encoder_inputs,decoder_inputs], outputs=decoder_outputs)
print(model.summary())
rmsprop = RMSprop(lr=learning_rate,clipnorm=clip_norm)
model.compile(loss='categorical_crossentropy',optimizer=rmsprop,metrics=['accuracy'])
x_train,x_test,y_train,y_test=tts(data["article"],data["summaries"],test_size=0.20)
history= model.fit(x=[x_train,y_train],
y=y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=([x_test,y_test], y_test))
print(model.summary())
"""_________________inference mode__________________"""
encoder_model_inf = Model(encoder_inputs,encoder_states)
decoder_state_input_H = Input(shape=(en_shape[0],))
decoder_state_input_C = Input(shape=(en_shape[0],))
decoder_state_inputs = [decoder_state_input_H, decoder_state_input_C]
decoder_outputs, decoder_state_h, decoder_state_c = decoder_LSTM(decoder_inputs,
initial_state=decoder_state_inputs)
decoder_states = [decoder_state_h, decoder_state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model_inf= Model([decoder_inputs]+decoder_state_inputs,
[decoder_outputs]+decoder_states)
scores = model.evaluate([x_test,y_test],y_test, verbose=1)
print('LSTM test scores:', scores)
print('\007')
print(model.summary())
return model,encoder_model_inf,decoder_model_inf,history