Изменить код, чтобы показать обнаруженный объект в отдельном кадре - PullRequest
0 голосов
/ 25 декабря 2018

Я использую код с этого сайта https://medium.com/enpit-developer-blog/image-recognition-for-custom-categories-with-tensorflow-68196e589efa для обучения моей собственной модели обнаружения объектов на изображениях.Потому что я новичок, у меня проблемы.Я хочу показать обнаруженный объект в отдельном кадре (обрезано). Модифицированный код здесь, но я явно что-то упускаю.

import os, sys

import tensorflow as tf
import matplotlib.pyplot as plt


os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

# change this as you see fit
image_path = sys.argv[1]

# Read in the image_data
image_data = tf.gfile.FastGFile(image_path, 'rb').read()

# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line 
                   in tf.gfile.GFile("retrained_labels.txt")]

# Unpersists graph from file
with tf.gfile.FastGFile("retrained_graph.pb", 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    tf.import_graph_def(graph_def, name='')

with tf.Session() as sess:
    # Feed the image_data as input to the graph and get first prediction
    softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')

    predictions = sess.run(softmax_tensor, \
             {'DecodeJpeg/contents:0': image_data})

    # Sort to show labels of first prediction in order of confidence
    top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
    plt.imshow(predictions[0])
    plt.show()
    for node_id in top_k:
        human_string = label_lines[node_id]
        score = predictions[0][node_id]
        print('%s (score = %.5f)' % (human_string, score))
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...