Сплит автоэнкодер на кодер и декодер керас - PullRequest
0 голосов
/ 28 февраля 2019

Я пытаюсь создать автокодер для:

  1. Обучаем модель
  2. Сплит-кодер и декодер
  3. Визуализация сжатых данных (кодер)
  4. Использовать произвольные сжатые данные для получения выходных данных (декодер)
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras import backend as K
from keras.datasets import mnist
import numpy as np

(x_train, _), (x_test, _) = mnist.load_data()

x_train = x_train.astype('float32') / 255.
x_train = x_train[:100,:,:,]
x_test = x_test.astype('float32') / 255.
x_test = x_train
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))  # adapt this if using `channels_first` image data format
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))  # adapt this if using `channels_first` image data format
 input_img = Input(shape=(28, 28, 1))  # adapt this if using `channels_first` image data format

x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)

# at this point the representation is (7, 7, 32)

decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(decoder)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

autoencoder = Model(input_img, decoded(encoded(input_img)))
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')

autoencoder.fit(x_train, x_train,
                epochs=10,
                batch_size=128,
                shuffle=True,
                validation_data=(x_test, x_test),
                #callbacks=[TensorBoard(log_dir='/tmp/tb', histogram_freq=0, write_graph=False)]
               )

Как разделить поезд и разделить на обученные веса?

1 Ответ

0 голосов
/ 28 февраля 2019

Создание кодировщика:

input_img = Input(shape=(28, 28, 1))

x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)

encoder = Model(input_img, encoded)

Создание декодера:

decoder_input= Input(shape_equal_to_encoder_output_shape)

decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(decoder_input)
x = UpSampling2D((2, 2))(decoder)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

decoder = Model(decoder_input, decoded)

Создание автоэнкодера:

auto_input = Input(shape=(28,28,1))
encoded = encoder(auto_input)
decoded = decoder(encoded)

auto_encoder = Model(auto_input, decoded)

Теперь вы можете использовать любой из них любым удобным вам способомк.

  1. обучить автокодеру
  2. использовать кодер и декодер
...