Таким образом, желаемый результат немного неправильный, поскольку одно из значений на 2 года старше объединенного значения.
Сначала мы выполняем объединение:
f = df.merge(df1, how='left', on='ID')
ID X1 X2 Date1 Y1 Y2 Date2
0 2 324 634 2016-01-01 1224 234 2016-01-04
1 2 334 534 2016-01-14 1224 234 2016-01-04
2 2 354 834 2016-01-30 1224 234 2016-01-04
3 4 543 843 2017-02-01 321 212 2016-12-01
4 4 923 43 2017-04-15 321 212 2016-12-01
5 5 32 212 2015-09-01 1121 222 2015-09-13
6 5 523 843 2015-09-15 1121 222 2015-09-13
7 5 212 222 2015-10-1 1121 222 2015-09-13
Затем мы создаем логическое значениемаска:
mask = (pd.to_datetime(f['Date1'], format='%Y-%m-%d') - pd.to_datetime(f['Date2'], format='%Y-%m-%d')).apply(lambda i: i.days <= 15 and i.days > 0)
0 False
1 True
2 False
3 False
4 False
5 False
6 True
7 False
Затем мы устанавливаем значение nan
, если условие не совпадает:
f.loc[~mask, ['Y1', 'Y2', 'Date2']] = np.nan
ID X1 X2 Date1 Y1 Y2 Date2
0 2 324 634 2016-01-01 NaN NaN NaN
1 2 334 534 2016-01-14 1224.0 234.0 2016-01-04
2 2 354 834 2016-01-30 NaN NaN NaN
3 4 543 843 2017-02-01 NaN NaN NaN
4 4 923 43 2017-04-15 NaN NaN NaN
5 5 32 212 2015-09-01 NaN NaN NaN
6 5 523 843 2015-09-15 1121.0 222.0 2015-09-13
7 5 212 222 2015-10-1 NaN NaN NaN