У меня есть набор данных с несколькими идентификаторами и датами, в котором я создал столбец для совокупного предложения в python.
Мои данные выглядят следующим образом
SKU Date Demand Supply Cum_Supply
1 20160207 6 2 2
1 20160214 5 0 2
1 20160221 1 0 2
1 20160228 6 0 2
1 20160306 1 0 2
1 20160313 101 0 2
1 20160320 1 0 2
1 20160327 1 0 2
2 20160207 0 0 0
2 20160214 0 0 0
2 20160221 2 0 0
2 20160228 2 0 0
2 20160306 2 0 0
2 20160313 1 0 0
2 20160320 1 0 0
2 20160327 1 0 0
Где Cum_supply был рассчитан как
idx = pd.MultiIndex.from_product([np.unique(data.Date), data.SKU.unique()])
data2 = data.set_index(['Date', 'SKU']).reindex(idx).fillna(0)
data2 = pd.concat([data2, data2.groupby(level=1).cumsum().add_prefix('Cum_')],1).sort_index(level=1).reset_index()
Я хочу создать столбец «True_Demand», который является максимальным неудовлетворенным спросом до этой даты max (Demand-Supply) + Cum_supply.
Таким образом, мой вывод будет примерно таким:
SKU Date Demand Supply Cum_Supply True_Demand
1 20160207 6 2 2 6
1 20160214 5 0 2 7
1 20160221 1 0 2 7
1 20160228 6 0 2 8
1 20160306 1 0 2 8
1 20160313 101 0 2 103
1 20160320 1 0 2 103
1 20160327 1 0 2 103
2 20160207 0 0 0 0
2 20160214 0 0 0 0
2 20160221 2 0 0 2
2 20160228 2 0 0 2
2 20160306 2 0 0 2
2 20160313 1 0 0 2
2 20160320 1 0 0 2
2 20160327 1 0 0 2
Таким образом, для 3-й записи (20160221) максимальный невыполненный спрос до 20160221 года составлял 5. Таким образом, истинный спрос составляет 5 + 2 = 7, несмотря на то, что неудовлетворенный спрос на эту дату составлял 1 + 2.
Коддля кадра данных
data = pd.DataFrame({'SKU':[1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2],
'Date':[20160207,20160214,20160221,20160228,20160306,20160313,20160320,20160327,20160207,20160214,20160221,20160228,20160306,20160313,20160320,20160327],
'Demand':[6,5,1,6,1,101,1,1,0,0,2,2,2,1,1,1],
'Supply':[2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]}
,columns=['Date', 'SKU', 'Demand', 'Supply'])