Вот решение для PySpark
.Имейте в виду, мне пришлось преобразовать number
в String
, поскольку у нас не может быть двух разных datatypes
для столбцов dataframe1
и dataframe2
в результирующих DataFrame
-
from pyspark.sql.functions import explode, array, struct, lit, col
df1 = sc.parallelize([(1, "book1", 1), (2, "book2", 2), (3, "book3", 3), (4, "book4", 4)]).toDF(["primary_key", "book", "number"])
df1.show()
+-----------+-----+------+
|primary_key| book|number|
+-----------+-----+------+
| 1|book1| 1|
| 2|book2| 2|
| 3|book3| 3|
| 4|book4| 4|
+-----------+-----+------+
df2 = sc.parallelize([(1, "book1", 1), (2, "book8", 8), (3, "book3", 7), (5, "book5", 5)]).toDF(["primary_key", "book", "number"])
df2.show()
+-----------+-----+------+
|primary_key| book|number|
+-----------+-----+------+
| 1|book1| 1|
| 2|book8| 8|
| 3|book3| 7|
| 5|book5| 5|
+-----------+-----+------+
def to_transpose(df, by):
# Filter dtypes and split into column names and type description
cols, dtypes = zip(*((c, t) for (c, t) in df.dtypes if c not in by))
# Spark SQL supports only homogeneous columns
assert len(set(dtypes)) == 1, "All columns have to be of the same type"
# Create and explode an array of (column_name, column_value) structs
kvs = explode(array([
struct(lit(c).alias("key"), col(c).alias("val")) for c in cols
])).alias("kvs")
return df.select(by + [kvs]).select(by + ["kvs.key", "kvs.val"])
df1_trans = to_transpose(df1.withColumn('number',col('number').cast('string')), ["primary_key"])\
.withColumnRenamed("val","dataframe1")\
.withColumnRenamed("key","diff_column_name")
df2_trans=to_transpose(df2.withColumn('number',col('number').cast('string')), ["primary_key"])\
.withColumnRenamed("val","dataframe2")\
.withColumnRenamed("key","diff_column_name")
df = df1_trans.join(df2_trans, ['primary_key','diff_column_name'], how='full')
df = df.where((col('dataframe1')!= col('dataframe2'))
| (col('dataframe1').isNotNull() & col('dataframe2').isNull())
| (col('dataframe2').isNotNull() & col('dataframe1').isNull())).sort('primary_key')
df = df.show()
+-----------+----------------+----------+----------+
|primary_key|diff_column_name|dataframe1|dataframe2|
+-----------+----------------+----------+----------+
| 2| book| book2| book8|
| 2| number| 2| 8|
| 3| number| 3| 7|
| 4| book| book4| null|
| 4| number| 4| null|
| 5| book| null| book5|
| 5| number| null| 5|
+-----------+----------------+----------+----------+