В этих l ink говорится, что усеченный MD5 распределен равномерно.Я хотел проверить это с помощью PySpark, и сначала я создал 1 000 000 UUID в Python, как показано ниже.Затем урезали первые три символа из MD5.Но график, который я получаю, не похож на кумулятивную функцию равномерного распределения.Я попытался с UUID1 и UUID4, и результаты похожи.Как правильно согласовать равномерное распределение усеченного MD5?
import uuid
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.distributions.empirical_distribution import ECDF
import pandas as pd
import pyspark.sql.functions as f
%matplotlib inline
### Generate 1,000,000 UUID1
uuid1 = [str(uuid.uuid1()) for i in range(1000000)] # make a UUID based on the host ID and current time
uuid1_df = pd.DataFrame({'uuid1':uuid1})
uuid1_spark_df = spark.createDataFrame(uuid1_df)
uuid1_spark_df = uuid1_spark_df.withColumn('hash', f.md5(f.col('uuid1')))\
.withColumn('truncated_hash3', f.substring(f.col('hash'), 1, 3))
count_by_truncated_hash3_uuid1 = uuid1_spark_df.groupBy('truncated_hash3').count()
uuid1_count_list = [row[1] for row in count_by_truncated_hash3_uuid1.collect()]
ecdf = ECDF(np.array(uuid1_count_list))
plt.figure(figsize = (14, 8))
plt.plot(ecdf.x,ecdf.y)
plt.show()
РЕДАКТИРОВАТЬ: я добавил гистограмму.Как вы можете видеть ниже, это больше похоже на нормальное распределение.
plt.figure(figsize = (14, 8))
plt.hist(uuid1_count_list)
plt.title('Histogram of counts in each truncated hash')
plt.show()