Вы упомянули Панд, но я не думаю, что это решит вашу проблему.
Почему бы вам не написать собственное решение?
Вы можете попробовать реализовать способ scikit-learn did.
Взять Распознавание рукописных цифр в качестве примера
Пример кода
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
# License: BSD 3 clause
import matplotlib.pyplot as plt
# Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, metrics
# The digits dataset
digits = datasets.load_digits() # <--- right here
images_and_labels = list(zip(digits.images, digits.target))
for index, (image, label) in enumerate(images_and_labels[:4]):
plt.subplot(2, 4, index + 1)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.title('Training: %i' % label)
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
classifier = svm.SVC(gamma=0.001)
classifier.fit(data[:n_samples // 2], digits.target[:n_samples // 2])
expected = digits.target[n_samples // 2:]
predicted = classifier.predict(data[n_samples // 2:])
print("Classification report for classifier %s:\n%s\n"
% (classifier, metrics.classification_report(expected, predicted)))
print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted))
images_and_predictions = list(zip(digits.images[n_samples // 2:], predicted))
for index, (image, prediction) in enumerate(images_and_predictions[:4]):
plt.subplot(2, 4, index + 5)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.title('Prediction: %i' % prediction)
plt.show()
Исходный код
scikit-learn
построить модуль с именем dataset
только для загрузки различных наборов данных, таких как MNIST (как изображения, так и метки).
Вы также получите удовольствие от чтенияисходный код dataset.load_digits ()
Это короткий и аккуратный .Надеюсь, вы сможете найти лучшее решение.