Я пытаюсь выполнить нелинейную регрессию, используя уравнение
y=ae^(-bT)
, где T - температура с данными:
([26.67, 93.33, 148.89, 222.01, 315.56])
, а y - вязкость с данными:
([1.35, .085, .012, .0049, .00075])
цель состоит в том, чтобы определить значение a
и b
БЕЗ линеаризации уравнения также для построения графика.На данный момент я попробовал один метод:
import matplotlib
matplotlib.use('Qt4Agg')
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
def func(x, a, b):
return a*(np.exp(-b * x))
#data
temp = np.array([26.67, 93.33, 148.89, 222.01, 315.56])
Viscosity = np.array([1.35, .085, .012, .0049, .00075])
initialGuess=[200,1]
guessedFactors=[func(x,*initialGuess ) for x in temp]
#curve fit
popt,pcov = curve_fit(func, temp, Viscosity,initialGuess)
print (popt)
print (pcov)
tempCont=np.linspace(min(temp),max(temp),50)
fittedData=[func(x, *popt) for x in tempCont]
fig1 = plt.figure(1)
ax=fig1.add_subplot(1,1,1)
###the three sets of data to plot
ax.plot(temp,Viscosity,linestyle='',marker='o', color='r',label="data")
ax.plot(temp,guessedFactors,linestyle='',marker='^', color='b',label="initial guess")
###beautification
ax.legend(loc=0, title="graphs", fontsize=12)
ax.set_ylabel("Viscosity")
ax.set_xlabel("temp")
ax.grid()
ax.set_title("$\mathrm{curve}_\mathrm{fit}$")
###putting the covariance matrix nicely
tab= [['{:.2g}'.format(j) for j in i] for i in pcov]
the_table = plt.table(cellText=tab,
colWidths = [0.2]*3,
loc='upper right', bbox=[0.483, 0.35, 0.5, 0.25] )
plt.text(250,65,'covariance:',size=12)
###putting the plot
plt.show()
я уверен, что сделал его слишком сложным и запутанным.