Я новичок в TF и пытаюсь запустить некоторый API-интерфейс обнаружения объектов Tensorflow с:
- GeForce 2GB-MX150
- 16 ГБ ОЗУ
- I78550U
Я получаю следующую ошибку, когда начинается тренировка, и я не могу понять, в чем дело.Я несколько раз пытался изменить некоторые параметры, например размер пакета, но все равно получаю ошибку.
В на этом снимке вы можете увидеть общий и доступный объем памяти, который есть у компьютера.
Я буду благодарен за вашу помощь.
ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[1,1024,52,38] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[Node: FirstStageFeatureExtractor/resnet_v1_101/resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/Conv2D
= Conv2D[T=DT_FLOAT, data_format="NCHW", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true,
_device="/job:localhost/replica:0/task:0/device:GPU:0"](FirstStageFeatureExtractor/resnet_v1_101/resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/Relu, FirstStageFeatureExtractor/resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/weights/read/_2629)]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
[[Node: gradients/FirstStageFeatureExtractor/resnet_v1_101/resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/Conv2D_grad/tuple/control_dependency_1/_3229
= _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_6894_...pendency_1", tensor_type=DT_FLOAT,
_device="/job:localhost/replica:0/task:0/device:CPU:0"]()]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.