У меня проблемы с выяснением того, как "смешать" два кадра данных.Я заполняю «отсутствующие» значения в DataFrame df_A
значениями, найденными в аналогичном DataFrame df_B
.Я пробовал разные версии join
, но результат пока не получен.
Более того,
Например
dict_a = {'ID' : ['id_a', 'id_b', 'id_c', 'id_c'], 'A': ['Hello', 2, 3, 3], 'B': [3, 4, 5, 55], 'C': [11, 'World', 15, 25], 'Date': ['2018-10-23', '2018-10-23', '2018-10-23', '2018-10-24']}
dict_b = {'ID' : ['id_c', 'id_a'], 'A': [np.nan, 31], 'B': [np.nan, 55], 'C': [11, np.nan], 'Date': ['2018-10-23', '2018-10-23']}
df_A = pd.DataFrame(data=dict_a)
df_B = pd.DataFrame(data=dict_b)
>> df_A
>> A B C ID Date
0 Hello 3 11 id_a 2018-10-23
1 2 4 World id_b 2018-10-23
2 3 5 15 id_c 2018-10-23
3 3 55 25 id_c 2018-10-24
>> df_B
>> A B C ID Date
0 NaN NaN 11.0 id_c 2018-10-23
1 31.0 55.0 NaN id_a 2018-10-23
Желаемый результат должен выглядеть следующим образом(псевдокод)
>> df_blended = df_B.values if df_A.isnan() else df_A.values where df_A.ID = df_B.ID and df_A.Date= df_B.Date
>> df_blended
>> A B C ID Date
0 3 5 11.0 id_c 2018-10-23
1 31.0 55.0 11 id_a 2018-10-23
Итак, установите приоритет df_B, во-вторых, используя df_A.Надеюсь, это понятно!
Спасибо