Это не работает, потому что .assign
, который вы выполняете, должен иметь достаточно значений, чтобы соответствовать исходному фрейму данных:
In [81]: df = pd.DataFrame({'x': np.random.rand(61800), 'y':np.random.rand(61800), 'z':np.random.rand(61800)})
In [82]: df.assign(count=np.repeat(range(10),10))
ValueError: Length of values does not match length of index
В этом случае все работает нормально, если мы повторим 10 групп6 180 раз:
In [83]: df.assign(count=np.repeat(range(10),6180))
Out[83]:
x y z count
0 0.781364 0.996545 0.756592 0
1 0.609127 0.981688 0.626721 0
2 0.547029 0.167678 0.198857 0
3 0.184405 0.484623 0.219722 0
4 0.451698 0.535085 0.045942 0
... ... ... ... ...
61795 0.783192 0.969306 0.974836 9
61796 0.890720 0.286384 0.744779 9
61797 0.512688 0.945516 0.907192 9
61798 0.526564 0.165620 0.766733 9
61799 0.683092 0.976219 0.524048 9
[61800 rows x 4 columns]
In [84]: extract = df.assign(count=np.repeat(range(10),6180)).groupby('count',as_index=False).agg(['mean','min', 'max'])
In [85]: extract
Out[85]:
x y z
mean min max mean min max mean min max
count
0 0.502338 0.000230 0.999546 0.501603 0.000263 0.999842 0.503807 0.000113 0.999826
1 0.500392 0.000059 0.999979 0.499935 0.000012 0.999767 0.500114 0.000230 0.999811
2 0.498377 0.000023 0.999832 0.496921 0.000003 0.999475 0.502887 0.000028 0.999828
3 0.504970 0.000637 0.999680 0.500943 0.000256 0.999902 0.497370 0.000257 0.999969
4 0.501195 0.000290 0.999992 0.498617 0.000149 0.999779 0.497895 0.000022 0.999877
5 0.499476 0.000186 0.999956 0.503227 0.000308 0.999907 0.504688 0.000100 0.999756
6 0.495488 0.000378 0.999606 0.499893 0.000119 0.999740 0.495924 0.000031 0.999556
7 0.498443 0.000005 0.999417 0.495728 0.000262 0.999972 0.501255 0.000087 0.999978
8 0.494110 0.000014 0.999888 0.495197 0.000074 0.999970 0.493215 0.000166 0.999718
9 0.496333 0.000365 0.999307 0.502074 0.000110 0.999856 0.499164 0.000035 0.999927