Вы имеете в виду что-то вроде этого:
Первое создание тестовых данных:
np.random.seed(42)
df = pd.DataFrame(np.random.randint(0, 20, [5, 3]), columns=['A', 'B', 'C'])
A B C
0 6 19 14
1 10 7 6
2 18 10 10
3 3 7 2
4 1 11 5
Запрошенная вами функция:
(df*.5).rolling(2).sum()
A B C
0 NaN NaN NaN
1 8.0 13.0 10.0
2 14.0 8.5 8.0
3 10.5 8.5 6.0
4 2.0 9.0 3.5
РЕДАКТИРОВАТЬ: для несбалансированной суммы вы можете определить вспомогательную функцию:
def weighted_mean(arr):
return sum(arr*[.25, .75])
df.rolling(2).apply(weighted_mean, raw=True)
A B C
0 NaN NaN NaN
1 9.00 10.00 8.00
2 16.00 9.25 9.00
3 6.75 7.75 4.00
4 1.50 10.00 4.25
EDIT2: ... и если веса должны быть установлены во время выполнения:
def weighted_mean(arr, weights=[.5, .5]):
return sum(arr*weights/sum(weights))
Нет дополнительных аргументов по умолчанию для сбалансированного среднего:
df.rolling(2).apply(weighted_mean, raw=True)
A B C
0 NaN NaN NaN
1 8.0 13.0 10.0
2 14.0 8.5 8.0
3 10.5 8.5 6.0
4 2.0 9.0 3.5
Несбалансированное среднее:
df.rolling(2).apply(weighted_mean, raw=True, args=[[.25, .75]])
A B C
0 NaN NaN NaN
1 9.00 10.00 8.00
2 16.00 9.25 9.00
3 6.75 7.75 4.00
4 1.50 10.00 4.25
Деление на sum(weights)
позволяет определять веса, не ограничиваясь только дробямиодин, но в любом соотношении:
df.rolling(2).apply(weighted_mean, raw=True, args=[[1, 3]])
A B C
0 NaN NaN NaN
1 9.00 10.00 8.00
2 16.00 9.25 9.00
3 6.75 7.75 4.00
4 1.50 10.00 4.25