Этот код openCV используется для обнаружения объектов в видео, передаваемом с помощью API AirSim (Unreal Plugin).Сценарий может обнаруживать объекты из видео с веб-камеры, но я хочу передать видеопоток из client.simGetImage, и я получаю сообщение об ошибке подтверждения:
, строка 103, в обнаружениях = net.forward ()cv2.error: OpenCV (3.4.3) /io/opencv/modules/dnn/src/layers/convolution_layer.cpp:1021: ошибка: (-215: подтверждение не выполнено): входные данные [0] -> размер [1]% BLOB-объектов[0] .size [1] == 0 в функции 'forward'
код:
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2
import setup_path
import airsim
import sys
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
cameraType = "scene"
cameraTypeMap = {
"depth": airsim.ImageType.DepthVis,
"segmentation": airsim.ImageType.Segmentation,
"seg": airsim.ImageType.Segmentation,
"scene": airsim.ImageType.Scene,
"disparity": airsim.ImageType.DisparityNormalized,
"normals": airsim.ImageType.SurfaceNormals
}
client = airsim.MultirotorClient()
client.confirmConnection()
client.enableApiControl(True)
client.armDisarm(True)
client.takeoffAsync().join()
fontFace = cv2.FONT_HERSHEY_SIMPLEX
fontScale = 0.5
thickness = 2
textSize, baseline = cv2.getTextSize("FPS", fontFace, fontScale, thickness)
print (textSize)
textOrg = (10, 10 + textSize[1])
frameCount = 0
startTime=time.clock()
fps = 0
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
print("[INFO] starting video stream...")
time.sleep(2.0)
fps = FPS().start()
while True:
rawImage = client.simGetImage("3", cameraTypeMap[cameraType])
if (rawImage == None):
print("Camera is not returning image, please check airsim for error messages")
sys.exit(0)
else:
png = cv2.imdecode(airsim.string_to_uint8_array(rawImage), cv2.IMREAD_UNCHANGED)
frame = imutils.resize(png, width=400)
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
0.007843, (300, 300), 127.5)
net.setInput(blob)
detections = net.forward()
for i in np.arange(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > args["confidence"]:
idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
label = "{}: {:.2f}%".format(CLASSES[idx],
confidence * 100)
cv2.rectangle(frame, (startX, startY), (endX, endY),
COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(frame, label, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
fps.update()
fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
cv2.destroyAllWindows()